Serveur d'exploration sur la simulation d'un remplissage de moule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimising the energy consumption on pultrusion process

Identifieur interne : 000062 ( PascalFrancis/Corpus ); précédent : 000061; suivant : 000063

Optimising the energy consumption on pultrusion process

Auteurs : F. J. G. Silva ; F. Ferreira ; M. C. S. Ribeiro ; Ana C. M. Castro ; M. R. A. Castro ; M. L. Dinis ; A. Fiuza

Source :

Mots-clés :

Abstract

This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.


Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1359-8368
A03   1    @0 Compos., Part B Eng.
A05       @2 57
A08 01  1  ENG  @1 Optimising the energy consumption on pultrusion process
A11 01  1    @1 SILVA (F. J. G.)
A11 02  1    @1 FERREIRA (F.)
A11 03  1    @1 RIBEIRO (M. C. S.)
A11 04  1    @1 CASTRO (Ana C. M.)
A11 05  1    @1 CASTRO (M. R. A.)
A11 06  1    @1 DINIS (M. L.)
A11 07  1    @1 FIUZA (A.)
A14 01      @1 Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida @2 4200-072 Porto @3 PRT @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut.
A14 02      @1 Faculdade de Engenharia da Universidade Porto (FEUP), Universidade do Porto, Rua Dr. Roberto Frias @2 4200-465 Porto @3 PRT @Z 6 aut. @Z 7 aut.
A20       @1 13-20
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 15379B @5 354000501100490030
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 26 ref.
A47 01  1    @0 14-0110121
A60       @1 P
A61       @0 A
A64 01  1    @0 Composites. Part B, Engineering
A66 01      @0 GBR
C01 01    ENG  @0 This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
C02 01  X    @0 001D10A06H
C03 01  X  FRE  @0 Moulage pultrusion @5 01
C03 01  X  ENG  @0 Pultrusion @5 01
C03 01  X  SPA  @0 Moldeo pultrusión @5 01
C03 02  X  FRE  @0 Méthode élément fini @5 02
C03 02  X  ENG  @0 Finite element method @5 02
C03 02  X  SPA  @0 Método elemento finito @5 02
C03 03  X  FRE  @0 Commande processus @5 03
C03 03  X  ENG  @0 Process control @5 03
C03 03  X  SPA  @0 Control proceso @5 03
C03 04  X  FRE  @0 Fibre verre @5 04
C03 04  X  ENG  @0 Glass fiber @5 04
C03 04  X  SPA  @0 Fibra vidrio @5 04
C03 05  X  FRE  @0 Ester polymère @2 NK @5 05
C03 05  X  ENG  @0 Ester polymer @2 NK @5 05
C03 05  X  SPA  @0 Ester polímero @2 NK @5 05
C03 06  X  FRE  @0 Polymère insaturé @5 06
C03 06  X  ENG  @0 Unsaturated polymer @5 06
C03 06  X  SPA  @0 Polímero insaturado @5 06
C03 07  X  FRE  @0 Matériau renforcé fibre @5 07
C03 07  X  ENG  @0 Fiber reinforced material @5 07
C03 07  X  SPA  @0 Material reforzado fibra @5 07
C03 08  X  FRE  @0 Optimisation @5 08
C03 08  X  ENG  @0 Optimization @5 08
C03 08  X  SPA  @0 Optimización @5 08
C03 09  X  FRE  @0 Consommation énergie @5 09
C03 09  X  ENG  @0 Energy consumption @5 09
C03 09  X  SPA  @0 Consumo energía @5 09
C03 10  X  FRE  @0 Modélisation @5 10
C03 10  X  ENG  @0 Modeling @5 10
C03 10  X  SPA  @0 Modelización @5 10
C03 11  X  FRE  @0 Commande température @5 11
C03 11  X  ENG  @0 Temperature control @5 11
C03 11  X  SPA  @0 Control temperatura @5 11
C03 12  X  FRE  @0 Elément chauffant @5 12
C03 12  X  ENG  @0 Heating element @5 12
C03 12  X  SPA  @0 Elemento calentador @5 12
C03 13  X  FRE  @0 Simulation numérique @5 13
C03 13  X  ENG  @0 Numerical simulation @5 13
C03 13  X  SPA  @0 Simulación numérica @5 13
C03 14  X  FRE  @0 Etude théorique @5 14
C03 14  X  ENG  @0 Theoretical study @5 14
C03 14  X  SPA  @0 Estudio teórico @5 14
C03 15  X  FRE  @0 Vérification expérimentale @5 15
C03 15  X  ENG  @0 Experimental test @5 15
C03 15  X  SPA  @0 Verificación experimental @5 15
C03 16  X  FRE  @0 Fibre minérale @2 FX @5 32
C03 16  X  ENG  @0 Mineral fiber @2 FX @5 32
C03 16  X  SPA  @0 Fibra inorgánica @2 FX @5 32
N21       @1 146

Format Inist (serveur)

NO : PASCAL 14-0110121 INIST
ET : Optimising the energy consumption on pultrusion process
AU : SILVA (F. J. G.); FERREIRA (F.); RIBEIRO (M. C. S.); CASTRO (Ana C. M.); CASTRO (M. R. A.); DINIS (M. L.); FIUZA (A.)
AF : Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida/4200-072 Porto/Portugal (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); Faculdade de Engenharia da Universidade Porto (FEUP), Universidade do Porto, Rua Dr. Roberto Frias/4200-465 Porto/Portugal (6 aut., 7 aut.)
DT : Publication en série; Niveau analytique
SO : Composites. Part B, Engineering; ISSN 1359-8368; Royaume-Uni; Da. 2014; Vol. 57; Pp. 13-20; Bibl. 26 ref.
LA : Anglais
EA : This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.
CC : 001D10A06H
FD : Moulage pultrusion; Méthode élément fini; Commande processus; Fibre verre; Ester polymère; Polymère insaturé; Matériau renforcé fibre; Optimisation; Consommation énergie; Modélisation; Commande température; Elément chauffant; Simulation numérique; Etude théorique; Vérification expérimentale; Fibre minérale
ED : Pultrusion; Finite element method; Process control; Glass fiber; Ester polymer; Unsaturated polymer; Fiber reinforced material; Optimization; Energy consumption; Modeling; Temperature control; Heating element; Numerical simulation; Theoretical study; Experimental test; Mineral fiber
SD : Moldeo pultrusión; Método elemento finito; Control proceso; Fibra vidrio; Ester polímero; Polímero insaturado; Material reforzado fibra; Optimización; Consumo energía; Modelización; Control temperatura; Elemento calentador; Simulación numérica; Estudio teórico; Verificación experimental; Fibra inorgánica
LO : INIST-15379B.354000501100490030
ID : 14-0110121

Links to Exploration step

Pascal:14-0110121

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optimising the energy consumption on pultrusion process</title>
<author>
<name sortKey="Silva, F J G" sort="Silva, F J G" uniqKey="Silva F" first="F. J. G." last="Silva">F. J. G. Silva</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ferreira, F" sort="Ferreira, F" uniqKey="Ferreira F" first="F." last="Ferreira">F. Ferreira</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ribeiro, M C S" sort="Ribeiro, M C S" uniqKey="Ribeiro M" first="M. C. S." last="Ribeiro">M. C. S. Ribeiro</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Castro, Ana C M" sort="Castro, Ana C M" uniqKey="Castro A" first="Ana C. M." last="Castro">Ana C. M. Castro</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Castro, M R A" sort="Castro, M R A" uniqKey="Castro M" first="M. R. A." last="Castro">M. R. A. Castro</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dinis, M L" sort="Dinis, M L" uniqKey="Dinis M" first="M. L." last="Dinis">M. L. Dinis</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculdade de Engenharia da Universidade Porto (FEUP), Universidade do Porto, Rua Dr. Roberto Frias</s1>
<s2>4200-465 Porto</s2>
<s3>PRT</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fiuza, A" sort="Fiuza, A" uniqKey="Fiuza A" first="A." last="Fiuza">A. Fiuza</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculdade de Engenharia da Universidade Porto (FEUP), Universidade do Porto, Rua Dr. Roberto Frias</s1>
<s2>4200-465 Porto</s2>
<s3>PRT</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0110121</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0110121 INIST</idno>
<idno type="RBID">Pascal:14-0110121</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000062</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Optimising the energy consumption on pultrusion process</title>
<author>
<name sortKey="Silva, F J G" sort="Silva, F J G" uniqKey="Silva F" first="F. J. G." last="Silva">F. J. G. Silva</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ferreira, F" sort="Ferreira, F" uniqKey="Ferreira F" first="F." last="Ferreira">F. Ferreira</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ribeiro, M C S" sort="Ribeiro, M C S" uniqKey="Ribeiro M" first="M. C. S." last="Ribeiro">M. C. S. Ribeiro</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Castro, Ana C M" sort="Castro, Ana C M" uniqKey="Castro A" first="Ana C. M." last="Castro">Ana C. M. Castro</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Castro, M R A" sort="Castro, M R A" uniqKey="Castro M" first="M. R. A." last="Castro">M. R. A. Castro</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dinis, M L" sort="Dinis, M L" uniqKey="Dinis M" first="M. L." last="Dinis">M. L. Dinis</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculdade de Engenharia da Universidade Porto (FEUP), Universidade do Porto, Rua Dr. Roberto Frias</s1>
<s2>4200-465 Porto</s2>
<s3>PRT</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fiuza, A" sort="Fiuza, A" uniqKey="Fiuza A" first="A." last="Fiuza">A. Fiuza</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Faculdade de Engenharia da Universidade Porto (FEUP), Universidade do Porto, Rua Dr. Roberto Frias</s1>
<s2>4200-465 Porto</s2>
<s3>PRT</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Composites. Part B, Engineering</title>
<title level="j" type="abbreviated">Compos., Part B Eng.</title>
<idno type="ISSN">1359-8368</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Composites. Part B, Engineering</title>
<title level="j" type="abbreviated">Compos., Part B Eng.</title>
<idno type="ISSN">1359-8368</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Energy consumption</term>
<term>Ester polymer</term>
<term>Experimental test</term>
<term>Fiber reinforced material</term>
<term>Finite element method</term>
<term>Glass fiber</term>
<term>Heating element</term>
<term>Mineral fiber</term>
<term>Modeling</term>
<term>Numerical simulation</term>
<term>Optimization</term>
<term>Process control</term>
<term>Pultrusion</term>
<term>Temperature control</term>
<term>Theoretical study</term>
<term>Unsaturated polymer</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Moulage pultrusion</term>
<term>Méthode élément fini</term>
<term>Commande processus</term>
<term>Fibre verre</term>
<term>Ester polymère</term>
<term>Polymère insaturé</term>
<term>Matériau renforcé fibre</term>
<term>Optimisation</term>
<term>Consommation énergie</term>
<term>Modélisation</term>
<term>Commande température</term>
<term>Elément chauffant</term>
<term>Simulation numérique</term>
<term>Etude théorique</term>
<term>Vérification expérimentale</term>
<term>Fibre minérale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1359-8368</s0>
</fA01>
<fA03 i2="1">
<s0>Compos., Part B Eng.</s0>
</fA03>
<fA05>
<s2>57</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optimising the energy consumption on pultrusion process</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SILVA (F. J. G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FERREIRA (F.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RIBEIRO (M. C. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CASTRO (Ana C. M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CASTRO (M. R. A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DINIS (M. L.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>FIUZA (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida</s1>
<s2>4200-072 Porto</s2>
<s3>PRT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Faculdade de Engenharia da Universidade Porto (FEUP), Universidade do Porto, Rua Dr. Roberto Frias</s1>
<s2>4200-465 Porto</s2>
<s3>PRT</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>13-20</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15379B</s2>
<s5>354000501100490030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0110121</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Composites. Part B, Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D10A06H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Moulage pultrusion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Pultrusion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Moldeo pultrusión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Méthode élément fini</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Finite element method</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Método elemento finito</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Commande processus</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Process control</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Control proceso</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Fibre verre</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Glass fiber</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fibra vidrio</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ester polymère</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Ester polymer</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Ester polímero</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Polymère insaturé</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Unsaturated polymer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Polímero insaturado</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Matériau renforcé fibre</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Fiber reinforced material</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Material reforzado fibra</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Consommation énergie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Energy consumption</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Consumo energía</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Commande température</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Temperature control</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Control temperatura</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Elément chauffant</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Heating element</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Elemento calentador</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Simulation numérique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Numerical simulation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Simulación numérica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Vérification expérimentale</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Experimental test</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Verificación experimental</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Fibre minérale</s0>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Mineral fiber</s0>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Fibra inorgánica</s0>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fN21>
<s1>146</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 14-0110121 INIST</NO>
<ET>Optimising the energy consumption on pultrusion process</ET>
<AU>SILVA (F. J. G.); FERREIRA (F.); RIBEIRO (M. C. S.); CASTRO (Ana C. M.); CASTRO (M. R. A.); DINIS (M. L.); FIUZA (A.)</AU>
<AF>Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida/4200-072 Porto/Portugal (1 aut., 2 aut., 3 aut., 4 aut., 5 aut.); Faculdade de Engenharia da Universidade Porto (FEUP), Universidade do Porto, Rua Dr. Roberto Frias/4200-465 Porto/Portugal (6 aut., 7 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Composites. Part B, Engineering; ISSN 1359-8368; Royaume-Uni; Da. 2014; Vol. 57; Pp. 13-20; Bibl. 26 ref.</SO>
<LA>Anglais</LA>
<EA>This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimise heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed based on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.</EA>
<CC>001D10A06H</CC>
<FD>Moulage pultrusion; Méthode élément fini; Commande processus; Fibre verre; Ester polymère; Polymère insaturé; Matériau renforcé fibre; Optimisation; Consommation énergie; Modélisation; Commande température; Elément chauffant; Simulation numérique; Etude théorique; Vérification expérimentale; Fibre minérale</FD>
<ED>Pultrusion; Finite element method; Process control; Glass fiber; Ester polymer; Unsaturated polymer; Fiber reinforced material; Optimization; Energy consumption; Modeling; Temperature control; Heating element; Numerical simulation; Theoretical study; Experimental test; Mineral fiber</ED>
<SD>Moldeo pultrusión; Método elemento finito; Control proceso; Fibra vidrio; Ester polímero; Polímero insaturado; Material reforzado fibra; Optimización; Consumo energía; Modelización; Control temperatura; Elemento calentador; Simulación numérica; Estudio teórico; Verificación experimental; Fibra inorgánica</SD>
<LO>INIST-15379B.354000501100490030</LO>
<ID>14-0110121</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/corpus/SimuPvV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000062 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    SimuPvV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0110121
   |texte=   Optimising the energy consumption on pultrusion process
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Thu Sep 15 17:34:16 2016. Site generation: Thu Sep 15 18:23:44 2016