Serveur d'exploration sur la simulation d'un remplissage de moule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies

Identifieur interne : 002098 ( Istex/Corpus ); précédent : 002097; suivant : 002099

Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies

Auteurs : Joseph Jagur-Grodzinski

Source :

Mots-clés :

Abstract

Recently investigated applications of polymeric materials for tissue engineering, regenerative medicine, implants, stents, and medical devices are described in the present review. Papers published during the last 2 years about polymeric materials used for preparation of various polymeric scaffolds, methods of fabrication of such scaffolds and their effectiveness in providing support for cell growth and development into various tissues and enhancing or mimicking an extracellular network (ECM's) have been cited. Papers describing the use of such polymeric materials for tissue engineering of cartilage and bones were cited. The exciting developments in the field of regenerative medicine, based on application of the self‐assembled biocompatible polymeric scaffolds for regeneration of tissues and organs are described in some detail. The use of the biocompatible and biodegradable collapsible polymeric stents, as well as the use of biocompatible, but not necessarily biodegradable polymeric materials for protective coatings of metallic stents and reservoirs of drugs, preventing restenosis and other post‐operative complications that may occur after insertion of a stent, have been reviewed. Clinical results pointing out the advantages of such treatments, as well as results indicating their limitations, have been cited. New formulas, for coating implants, stents, and other medical devices, have been discussed. Copyright © 2006 John Wiley & Sons, Ltd.


Url:
DOI: 10.1002/pat.729

Links to Exploration step

ISTEX:4A91D0561248B6A75107AB06C120667491366C7F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies</title>
<author>
<name sortKey="Jagur Rodzinski, Joseph" sort="Jagur Rodzinski, Joseph" uniqKey="Jagur Rodzinski J" first="Joseph" last="Jagur-Grodzinski">Joseph Jagur-Grodzinski</name>
<affiliation>
<mods:affiliation>Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4A91D0561248B6A75107AB06C120667491366C7F</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1002/pat.729</idno>
<idno type="url">https://api.istex.fr/document/4A91D0561248B6A75107AB06C120667491366C7F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002098</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies</title>
<author>
<name sortKey="Jagur Rodzinski, Joseph" sort="Jagur Rodzinski, Joseph" uniqKey="Jagur Rodzinski J" first="Joseph" last="Jagur-Grodzinski">Joseph Jagur-Grodzinski</name>
<affiliation>
<mods:affiliation>Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Polymers for Advanced Technologies</title>
<title level="j" type="abbrev">Polym. Adv. Technol.</title>
<idno type="ISSN">1042-7147</idno>
<idno type="eISSN">1099-1581</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2006-06">2006-06</date>
<biblScope unit="volume">17</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="395">395</biblScope>
<biblScope unit="page" to="418">418</biblScope>
</imprint>
<idno type="ISSN">1042-7147</idno>
</series>
<idno type="istex">4A91D0561248B6A75107AB06C120667491366C7F</idno>
<idno type="DOI">10.1002/pat.729</idno>
<idno type="ArticleID">PAT729</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1042-7147</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>biological applications of polymers</term>
<term>drug delivery systems</term>
<term>implant</term>
<term>regenerative medicine</term>
<term>tissue engineering</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recently investigated applications of polymeric materials for tissue engineering, regenerative medicine, implants, stents, and medical devices are described in the present review. Papers published during the last 2 years about polymeric materials used for preparation of various polymeric scaffolds, methods of fabrication of such scaffolds and their effectiveness in providing support for cell growth and development into various tissues and enhancing or mimicking an extracellular network (ECM's) have been cited. Papers describing the use of such polymeric materials for tissue engineering of cartilage and bones were cited. The exciting developments in the field of regenerative medicine, based on application of the self‐assembled biocompatible polymeric scaffolds for regeneration of tissues and organs are described in some detail. The use of the biocompatible and biodegradable collapsible polymeric stents, as well as the use of biocompatible, but not necessarily biodegradable polymeric materials for protective coatings of metallic stents and reservoirs of drugs, preventing restenosis and other post‐operative complications that may occur after insertion of a stent, have been reviewed. Clinical results pointing out the advantages of such treatments, as well as results indicating their limitations, have been cited. New formulas, for coating implants, stents, and other medical devices, have been discussed. Copyright © 2006 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Joseph Jagur‐Grodzinski</name>
<affiliations>
<json:string>Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tissue engineering</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>regenerative medicine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>implant</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>biological applications of polymers</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>drug delivery systems</value>
</json:item>
</subject>
<articleId>
<json:string>PAT729</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>reviewArticle</json:string>
</originalGenre>
<abstract>Recently investigated applications of polymeric materials for tissue engineering, regenerative medicine, implants, stents, and medical devices are described in the present review. Papers published during the last 2 years about polymeric materials used for preparation of various polymeric scaffolds, methods of fabrication of such scaffolds and their effectiveness in providing support for cell growth and development into various tissues and enhancing or mimicking an extracellular network (ECM's) have been cited. Papers describing the use of such polymeric materials for tissue engineering of cartilage and bones were cited. The exciting developments in the field of regenerative medicine, based on application of the self‐assembled biocompatible polymeric scaffolds for regeneration of tissues and organs are described in some detail. The use of the biocompatible and biodegradable collapsible polymeric stents, as well as the use of biocompatible, but not necessarily biodegradable polymeric materials for protective coatings of metallic stents and reservoirs of drugs, preventing restenosis and other post‐operative complications that may occur after insertion of a stent, have been reviewed. Clinical results pointing out the advantages of such treatments, as well as results indicating their limitations, have been cited. New formulas, for coating implants, stents, and other medical devices, have been discussed. Copyright © 2006 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>7.472</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1462</abstractCharCount>
<pdfWordCount>20049</pdfWordCount>
<pdfCharCount>134760</pdfCharCount>
<pdfPageCount>24</pdfPageCount>
<abstractWordCount>206</abstractWordCount>
</qualityIndicators>
<title>Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies</title>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<volume>17</volume>
<publisherId>
<json:string>PAT</json:string>
</publisherId>
<pages>
<total>24</total>
<last>418</last>
<first>395</first>
</pages>
<issn>
<json:string>1042-7147</json:string>
</issn>
<issue>6</issue>
<subject>
<json:item>
<value>Review</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1099-1581</json:string>
</eissn>
<title>Polymers for Advanced Technologies</title>
<doi>
<json:string>10.1002/(ISSN)1099-1581</json:string>
</doi>
</host>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1002/pat.729</json:string>
</doi>
<id>4A91D0561248B6A75107AB06C120667491366C7F</id>
<score>0.33179563</score>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/4A91D0561248B6A75107AB06C120667491366C7F/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/4A91D0561248B6A75107AB06C120667491366C7F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/4A91D0561248B6A75107AB06C120667491366C7F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2006</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies</title>
<author>
<persName>
<forename type="first">Joseph</forename>
<surname>Jagur‐Grodzinski</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel.</p>
</note>
<affiliation>Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Polymers for Advanced Technologies</title>
<title level="j" type="abbrev">Polym. Adv. Technol.</title>
<idno type="pISSN">1042-7147</idno>
<idno type="eISSN">1099-1581</idno>
<idno type="DOI">10.1002/(ISSN)1099-1581</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2006-06"></date>
<biblScope unit="volume">17</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="395">395</biblScope>
<biblScope unit="page" to="418">418</biblScope>
</imprint>
</monogr>
<idno type="istex">4A91D0561248B6A75107AB06C120667491366C7F</idno>
<idno type="DOI">10.1002/pat.729</idno>
<idno type="ArticleID">PAT729</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2006</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Recently investigated applications of polymeric materials for tissue engineering, regenerative medicine, implants, stents, and medical devices are described in the present review. Papers published during the last 2 years about polymeric materials used for preparation of various polymeric scaffolds, methods of fabrication of such scaffolds and their effectiveness in providing support for cell growth and development into various tissues and enhancing or mimicking an extracellular network (ECM's) have been cited. Papers describing the use of such polymeric materials for tissue engineering of cartilage and bones were cited. The exciting developments in the field of regenerative medicine, based on application of the self‐assembled biocompatible polymeric scaffolds for regeneration of tissues and organs are described in some detail. The use of the biocompatible and biodegradable collapsible polymeric stents, as well as the use of biocompatible, but not necessarily biodegradable polymeric materials for protective coatings of metallic stents and reservoirs of drugs, preventing restenosis and other post‐operative complications that may occur after insertion of a stent, have been reviewed. Clinical results pointing out the advantages of such treatments, as well as results indicating their limitations, have been cited. New formulas, for coating implants, stents, and other medical devices, have been discussed. Copyright © 2006 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>keywords</head>
<item>
<term>tissue engineering</term>
</item>
<item>
<term>regenerative medicine</term>
</item>
<item>
<term>implant</term>
</item>
<item>
<term>biological applications of polymers</term>
</item>
<item>
<term>drug delivery systems</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Review</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2006-03-03">Received</change>
<change when="2006-04-27">Registration</change>
<change when="2006-06">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/4A91D0561248B6A75107AB06C120667491366C7F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-1581</doi>
<issn type="print">1042-7147</issn>
<issn type="electronic">1099-1581</issn>
<idGroup>
<id type="product" value="PAT"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="POLYMERS FOR ADVANCED TECHNOLOGIES">Polymers for Advanced Technologies</title>
<title type="short">Polym. Adv. Technol.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="60">
<doi origin="wiley" registered="yes">10.1002/pat.v17:6</doi>
<numberingGroup>
<numbering type="journalVolume" number="17">17</numbering>
<numbering type="journalIssue">6</numbering>
</numberingGroup>
<coverDate startDate="2006-06">June 2006</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="reviewArticle" position="10" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/pat.729</doi>
<idGroup>
<id type="unit" value="PAT729"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="24"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Review</title>
<title type="tocHeading1">Reviews</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2006 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2006-03-03"></event>
<event type="manuscriptAccepted" date="2006-04-27"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2006-06-23"></event>
<event type="firstOnline" date="2006-06-23"></event>
<event type="publishedOnlineFinalForm" date="2006-07-27"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-02"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-06"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-03"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">395</numbering>
<numbering type="pageLast">418</numbering>
</numberingGroup>
<correspondenceTo>Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:PAT.PAT729.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="244"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies</title>
<title type="short" xml:lang="en">Review of recent studies</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Joseph</givenNames>
<familyName>Jagur‐Grodzinski</familyName>
</personName>
<contactDetails>
<email>joseph.jagur@weizmann.ac.il</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="IL" type="organization">
<unparsedAffiliation>Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">tissue engineering</keyword>
<keyword xml:id="kwd2">regenerative medicine</keyword>
<keyword xml:id="kwd3">implant</keyword>
<keyword xml:id="kwd4">biological applications of polymers</keyword>
<keyword xml:id="kwd5">drug delivery systems</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Recently investigated applications of polymeric materials for tissue engineering, regenerative medicine, implants, stents, and medical devices are described in the present review. Papers published during the last 2 years about polymeric materials used for preparation of various polymeric scaffolds, methods of fabrication of such scaffolds and their effectiveness in providing support for cell growth and development into various tissues and enhancing or mimicking an extracellular network (ECM's) have been cited. Papers describing the use of such polymeric materials for tissue engineering of cartilage and bones were cited. The exciting developments in the field of regenerative medicine, based on application of the self‐assembled biocompatible polymeric scaffolds for regeneration of tissues and organs are described in some detail. The use of the biocompatible and biodegradable collapsible polymeric stents, as well as the use of biocompatible, but not necessarily biodegradable polymeric materials for protective coatings of metallic stents and reservoirs of drugs, preventing restenosis and other post‐operative complications that may occur after insertion of a stent, have been reviewed. Clinical results pointing out the advantages of such treatments, as well as results indicating their limitations, have been cited. New formulas, for coating implants, stents, and other medical devices, have been discussed. Copyright © 2006 John Wiley & Sons, Ltd.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Review of recent studies</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Jagur‐Grodzinski</namePart>
<affiliation>Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel</affiliation>
<description>Correspondence: Weizmann Institute of Science, P. O. Box 26, Rehovot 76100, Israel.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="reviewArticle"></genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2006-06</dateIssued>
<dateCaptured encoding="w3cdtf">2006-03-03</dateCaptured>
<dateValid encoding="w3cdtf">2006-04-27</dateValid>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
<extent unit="references">244</extent>
</physicalDescription>
<abstract lang="en">Recently investigated applications of polymeric materials for tissue engineering, regenerative medicine, implants, stents, and medical devices are described in the present review. Papers published during the last 2 years about polymeric materials used for preparation of various polymeric scaffolds, methods of fabrication of such scaffolds and their effectiveness in providing support for cell growth and development into various tissues and enhancing or mimicking an extracellular network (ECM's) have been cited. Papers describing the use of such polymeric materials for tissue engineering of cartilage and bones were cited. The exciting developments in the field of regenerative medicine, based on application of the self‐assembled biocompatible polymeric scaffolds for regeneration of tissues and organs are described in some detail. The use of the biocompatible and biodegradable collapsible polymeric stents, as well as the use of biocompatible, but not necessarily biodegradable polymeric materials for protective coatings of metallic stents and reservoirs of drugs, preventing restenosis and other post‐operative complications that may occur after insertion of a stent, have been reviewed. Clinical results pointing out the advantages of such treatments, as well as results indicating their limitations, have been cited. New formulas, for coating implants, stents, and other medical devices, have been discussed. Copyright © 2006 John Wiley & Sons, Ltd.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>tissue engineering</topic>
<topic>regenerative medicine</topic>
<topic>implant</topic>
<topic>biological applications of polymers</topic>
<topic>drug delivery systems</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Polymers for Advanced Technologies</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Polym. Adv. Technol.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Review</topic>
</subject>
<identifier type="ISSN">1042-7147</identifier>
<identifier type="eISSN">1099-1581</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1581</identifier>
<identifier type="PublisherID">PAT</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>395</start>
<end>418</end>
<total>24</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">4A91D0561248B6A75107AB06C120667491366C7F</identifier>
<identifier type="DOI">10.1002/pat.729</identifier>
<identifier type="ArticleID">PAT729</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2006 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
</metadata>
<enrichments>
<json:item>
<type>multicat</type>
<uri>https://api.istex.fr/document/4A91D0561248B6A75107AB06C120667491366C7F/enrichments/multicat</uri>
</json:item>
</enrichments>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/corpus/SimuPvV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002098 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    SimuPvV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:4A91D0561248B6A75107AB06C120667491366C7F
   |texte=   Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Thu Sep 15 17:34:16 2016. Site generation: Thu Sep 15 18:23:44 2016