Danse-thérapie et Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies

Identifieur interne : 000102 ( Pmc/Curation ); précédent : 000101; suivant : 000103

Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies

Auteurs : Marcelo Farina [Brésil] ; João B. T. Rocha [Brésil] ; Michael Aschner [États-Unis]

Source :

RBID : PMC:3183295

Abstract

Neurological disorders are common, costly, and can cause enduring disability. Although mostly unknown, a few environmental toxicants are recognized causes of neurological disorders and subclinical brain dysfunction. One of the best known neurotoxins is methylmercury (MeHg), a ubiquitous environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. In the aquatic environment, MeHg is accumulated in fish, which represent a major source of human exposure. Although several episodes of MeHg poisoning have contributed to the understanding of the clinical symptoms and histological changes elicited by this neurotoxicant in humans, experimental studies have been pivotal in elucidating the molecular mechanisms that mediate MeHg-induced neurotoxicity. The objective of this mini-review is to summarize data from experimental studies on molecular mechanisms of MeHg-induced neurotoxicity. While the full picture has yet to be unmasked, in vitro approaches based on cultured cells, isolated mitochondria and tissue slices, as well as in vivo studies based mainly on the use of rodents, point to impairment in intracellular calcium homeostasis, alteration of glutamate homeostasis and oxidative stress as important events in MeHg-induced neurotoxicity. The potential relationship among these events is discussed, with particular emphasis on the neurotoxic cycle triggered by MeHg-induced excitotoxicity and oxidative stress. The particular sensitivity of the developing brain to MeHg toxicity, the critical role of selenoproteins and the potential protective role of selenocompounds are also discussed. These concepts provide the biochemical bases to the understanding of MeHg neurotoxicity, contributing to the discovery of endogenous and exogenous molecules that counteract such toxicity and provide efficacious means for ablating this vicious cycle.


Url:
DOI: 10.1016/j.lfs.2011.05.019
PubMed: 21683713
PubMed Central: 3183295

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3183295

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies</title>
<author>
<name sortKey="Farina, Marcelo" sort="Farina, Marcelo" uniqKey="Farina M" first="Marcelo" last="Farina">Marcelo Farina</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil</nlm:aff>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rocha, Joao B T" sort="Rocha, Joao B T" uniqKey="Rocha J" first="João B. T." last="Rocha">João B. T. Rocha</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil</nlm:aff>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Aschner, Michael" sort="Aschner, Michael" uniqKey="Aschner M" first="Michael" last="Aschner">Michael Aschner</name>
<affiliation wicri:level="1">
<nlm:aff id="A3">Department of Pediatrics and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pediatrics and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21683713</idno>
<idno type="pmc">3183295</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183295</idno>
<idno type="RBID">PMC:3183295</idno>
<idno type="doi">10.1016/j.lfs.2011.05.019</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000214</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000214</idno>
<idno type="wicri:Area/Pmc/Curation">000102</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000102</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies</title>
<author>
<name sortKey="Farina, Marcelo" sort="Farina, Marcelo" uniqKey="Farina M" first="Marcelo" last="Farina">Marcelo Farina</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil</nlm:aff>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rocha, Joao B T" sort="Rocha, Joao B T" uniqKey="Rocha J" first="João B. T." last="Rocha">João B. T. Rocha</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil</nlm:aff>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Aschner, Michael" sort="Aschner, Michael" uniqKey="Aschner M" first="Michael" last="Aschner">Michael Aschner</name>
<affiliation wicri:level="1">
<nlm:aff id="A3">Department of Pediatrics and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pediatrics and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Life sciences</title>
<idno type="ISSN">0024-3205</idno>
<idno type="eISSN">1879-0631</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Neurological disorders are common, costly, and can cause enduring disability. Although mostly unknown, a few environmental toxicants are recognized causes of neurological disorders and subclinical brain dysfunction. One of the best known neurotoxins is methylmercury (MeHg), a ubiquitous environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. In the aquatic environment, MeHg is accumulated in fish, which represent a major source of human exposure. Although several episodes of MeHg poisoning have contributed to the understanding of the clinical symptoms and histological changes elicited by this neurotoxicant in humans, experimental studies have been pivotal in elucidating the molecular mechanisms that mediate MeHg-induced neurotoxicity. The objective of this mini-review is to summarize data from experimental studies on molecular mechanisms of MeHg-induced neurotoxicity. While the full picture has yet to be unmasked,
<italic>in vitro</italic>
approaches based on cultured cells, isolated mitochondria and tissue slices, as well as
<italic>in vivo</italic>
studies based mainly on the use of rodents, point to impairment in intracellular calcium homeostasis, alteration of glutamate homeostasis and oxidative stress as important events in MeHg-induced neurotoxicity. The potential relationship among these events is discussed, with particular emphasis on the neurotoxic cycle triggered by MeHg-induced excitotoxicity and oxidative stress. The particular sensitivity of the developing brain to MeHg toxicity, the critical role of selenoproteins and the potential protective role of selenocompounds are also discussed. These concepts provide the biochemical bases to the understanding of MeHg neurotoxicity, contributing to the discovery of endogenous and exogenous molecules that counteract such toxicity and provide efficacious means for ablating this vicious cycle.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article" xml:lang="en">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">0375521</journal-id>
<journal-id journal-id-type="pubmed-jr-id">5497</journal-id>
<journal-id journal-id-type="nlm-ta">Life Sci</journal-id>
<journal-title-group>
<journal-title>Life sciences</journal-title>
</journal-title-group>
<issn pub-type="ppub">0024-3205</issn>
<issn pub-type="epub">1879-0631</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21683713</article-id>
<article-id pub-id-type="pmc">3183295</article-id>
<article-id pub-id-type="doi">10.1016/j.lfs.2011.05.019</article-id>
<article-id pub-id-type="manuscript">NIHMS309939</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Farina</surname>
<given-names>Marcelo</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rocha</surname>
<given-names>João B. T.</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Aschner</surname>
<given-names>Michael</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil</aff>
<aff id="A2">
<label>2</label>
Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil</aff>
<aff id="A3">
<label>3</label>
Department of Pediatrics and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA</aff>
<author-notes>
<corresp id="cor1">
<label>*</label>
Corresponding author: Marcelo Farina, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil, Tel: +55 48 3721 9589, Fax: +55 48 3721 9672,
<email>farina@ccb.ufsc.br</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>11</day>
<month>7</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>13</day>
<month>6</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="ppub">
<day>10</day>
<month>10</month>
<year>2011</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>10</day>
<month>10</month>
<year>2012</year>
</pub-date>
<volume>89</volume>
<issue>15-16</issue>
<fpage>555</fpage>
<lpage>563</lpage>
<permissions>
<copyright-statement>© 2011 Elsevier Inc. All rights reserved.</copyright-statement>
<copyright-year>2011</copyright-year>
</permissions>
<abstract>
<p id="P1">Neurological disorders are common, costly, and can cause enduring disability. Although mostly unknown, a few environmental toxicants are recognized causes of neurological disorders and subclinical brain dysfunction. One of the best known neurotoxins is methylmercury (MeHg), a ubiquitous environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. In the aquatic environment, MeHg is accumulated in fish, which represent a major source of human exposure. Although several episodes of MeHg poisoning have contributed to the understanding of the clinical symptoms and histological changes elicited by this neurotoxicant in humans, experimental studies have been pivotal in elucidating the molecular mechanisms that mediate MeHg-induced neurotoxicity. The objective of this mini-review is to summarize data from experimental studies on molecular mechanisms of MeHg-induced neurotoxicity. While the full picture has yet to be unmasked,
<italic>in vitro</italic>
approaches based on cultured cells, isolated mitochondria and tissue slices, as well as
<italic>in vivo</italic>
studies based mainly on the use of rodents, point to impairment in intracellular calcium homeostasis, alteration of glutamate homeostasis and oxidative stress as important events in MeHg-induced neurotoxicity. The potential relationship among these events is discussed, with particular emphasis on the neurotoxic cycle triggered by MeHg-induced excitotoxicity and oxidative stress. The particular sensitivity of the developing brain to MeHg toxicity, the critical role of selenoproteins and the potential protective role of selenocompounds are also discussed. These concepts provide the biochemical bases to the understanding of MeHg neurotoxicity, contributing to the discovery of endogenous and exogenous molecules that counteract such toxicity and provide efficacious means for ablating this vicious cycle.</p>
</abstract>
<kwd-group>
<kwd>methylmercury</kwd>
<kwd>neurotoxicity</kwd>
<kwd>oxidative stress</kwd>
<kwd>glutamate</kwd>
<kwd>calcium</kwd>
<kwd>selenium</kwd>
<kwd>selenoproteins</kwd>
<kwd>glutathione peroxidase</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source country="United States">National Institute of Environmental Health Sciences : NIEHS</funding-source>
<award-id>R01 ES007331-16 || ES</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Psychologie/explor/DanceTherParkinsonV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000102 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000102 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Psychologie
   |area=    DanceTherParkinsonV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:3183295
   |texte=   Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:21683713" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a DanceTherParkinsonV1 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Sun Aug 9 17:42:30 2020. Site generation: Wed Sep 30 11:15:33 2020