Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry

Identifieur interne : 001358 ( Main/Corpus ); précédent : 001357; suivant : 001359

Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry

Auteurs : Andreas Geyer ; Jochen Stutz

Source :

RBID : ISTEX:C6ACAD873B75E90F0A05DD5C7F490F53988341F3

Abstract

Recent field observations in urban areas have shown that trace gases, such as O3, NO2, and NO3, develop distinct vertical concentration profiles at night. Because nocturnal chemistry can change the gas‐phase and particulate composition in the urban boundary layer considerably, it is important to understand the mechanisms that lead to the change of trace gas levels with altitude. The quantification of the altitude dependence of chemical processes leading to the removal of volatile organic carbons (VOC) and NOx are crucial to assess the influence of nocturnal chemistry on ozone formation during the following day. We present a one‐dimensional chemical transport model developed to study the interaction between chemistry and vertical transport in the nocturnal boundary layer. The model reproduces the general features found in field observations, such as positive O3 and NO3 gradients. The slow upward transport of NO and VOC emitted near the ground and the simultaneously occurring chemistry, in particular the reactions of NO with O3 and NO3, are found to control the vertical structure of the chemistry of NOx, NO3, N2O5, and VOC. In the case of NO2 and O3, dry deposition is also significant. The model results show that vertical transport of N2O5 plays an important role, and is often the main source of NO3 radicals near the ground. Chemical steady state calculations of the concentrations of NO3 and N2O5, as they have been used in the past, are therefore not representative in cases with significant vertical fluxes of N2O5. The vertical gradient of the oxidation rate of NO2 implies that the removal of NOx occurs predominately in the upper nocturnal boundary layer (NBL). Our study shows that observations at one altitude and chemical box models are often insufficient to accurately describe the chemistry in NBL.

Url:
DOI: 10.1029/2003JD004211

Links to Exploration step

ISTEX:C6ACAD873B75E90F0A05DD5C7F490F53988341F3

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry</title>
<author>
<name sortKey="Geyer, Andreas" sort="Geyer, Andreas" uniqKey="Geyer A" first="Andreas" last="Geyer">Andreas Geyer</name>
<affiliation>
<mods:affiliation>Department of Atmospheric Sciences, University of California, California, Los Angeles, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stutz, Jochen" sort="Stutz, Jochen" uniqKey="Stutz J" first="Jochen" last="Stutz">Jochen Stutz</name>
<affiliation>
<mods:affiliation>Department of Atmospheric Sciences, University of California, California, Los Angeles, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jochen@atmos.ucla.edu</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C6ACAD873B75E90F0A05DD5C7F490F53988341F3</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1029/2003JD004211</idno>
<idno type="url">https://api.istex.fr/document/C6ACAD873B75E90F0A05DD5C7F490F53988341F3/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">001358</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry</title>
<author>
<name sortKey="Geyer, Andreas" sort="Geyer, Andreas" uniqKey="Geyer A" first="Andreas" last="Geyer">Andreas Geyer</name>
<affiliation>
<mods:affiliation>Department of Atmospheric Sciences, University of California, California, Los Angeles, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stutz, Jochen" sort="Stutz, Jochen" uniqKey="Stutz J" first="Jochen" last="Stutz">Jochen Stutz</name>
<affiliation>
<mods:affiliation>Department of Atmospheric Sciences, University of California, California, Los Angeles, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jochen@atmos.ucla.edu</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2004-06-27">2004-06-27</date>
<biblScope unit="volume">109</biblScope>
<biblScope unit="issue">D12</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">C6ACAD873B75E90F0A05DD5C7F490F53988341F3</idno>
<idno type="DOI">10.1029/2003JD004211</idno>
<idno type="ArticleID">2003JD004211</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Recent field observations in urban areas have shown that trace gases, such as O3, NO2, and NO3, develop distinct vertical concentration profiles at night. Because nocturnal chemistry can change the gas‐phase and particulate composition in the urban boundary layer considerably, it is important to understand the mechanisms that lead to the change of trace gas levels with altitude. The quantification of the altitude dependence of chemical processes leading to the removal of volatile organic carbons (VOC) and NOx are crucial to assess the influence of nocturnal chemistry on ozone formation during the following day. We present a one‐dimensional chemical transport model developed to study the interaction between chemistry and vertical transport in the nocturnal boundary layer. The model reproduces the general features found in field observations, such as positive O3 and NO3 gradients. The slow upward transport of NO and VOC emitted near the ground and the simultaneously occurring chemistry, in particular the reactions of NO with O3 and NO3, are found to control the vertical structure of the chemistry of NOx, NO3, N2O5, and VOC. In the case of NO2 and O3, dry deposition is also significant. The model results show that vertical transport of N2O5 plays an important role, and is often the main source of NO3 radicals near the ground. Chemical steady state calculations of the concentrations of NO3 and N2O5, as they have been used in the past, are therefore not representative in cases with significant vertical fluxes of N2O5. The vertical gradient of the oxidation rate of NO2 implies that the removal of NOx occurs predominately in the upper nocturnal boundary layer (NBL). Our study shows that observations at one altitude and chemical box models are often insufficient to accurately describe the chemistry in NBL.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Andreas Geyer</name>
<affiliations>
<json:string>Department of Atmospheric Sciences, University of California, California, Los Angeles, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jochen Stutz</name>
<affiliations>
<json:string>E-mail: jochen@atmos.ucla.edu</json:string>
<json:string>Department of Atmospheric Sciences, University of California, California, Los Angeles, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nocturnal chemistry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nitrate radical</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>vertical transport</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Recent field observations in urban areas have shown that trace gases, such as O3, NO2, and NO3, develop distinct vertical concentration profiles at night. Because nocturnal chemistry can change the gas‐phase and particulate composition in the urban boundary layer considerably, it is important to understand the mechanisms that lead to the change of trace gas levels with altitude. The quantification of the altitude dependence of chemical processes leading to the removal of volatile organic carbons (VOC) and NOx are crucial to assess the influence of nocturnal chemistry on ozone formation during the following day. We present a one‐dimensional chemical transport model developed to study the interaction between chemistry and vertical transport in the nocturnal boundary layer. The model reproduces the general features found in field observations, such as positive O3 and NO3 gradients. The slow upward transport of NO and VOC emitted near the ground and the simultaneously occurring chemistry, in particular the reactions of NO with O3 and NO3, are found to control the vertical structure of the chemistry of NOx, NO3, N2O5, and VOC. In the case of NO2 and O3, dry deposition is also significant. The model results show that vertical transport of N2O5 plays an important role, and is often the main source of NO3 radicals near the ground. Chemical steady state calculations of the concentrations of NO3 and N2O5, as they have been used in the past, are therefore not representative in cases with significant vertical fluxes of N2O5. The vertical gradient of the oxidation rate of NO2 implies that the removal of NOx occurs predominately in the upper nocturnal boundary layer (NBL). Our study shows that observations at one altitude and chemical box models are often insufficient to accurately describe the chemistry in NBL.</abstract>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>592 x 807 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>3</keywordCount>
<abstractCharCount>1829</abstractCharCount>
<pdfWordCount>13359</pdfWordCount>
<pdfCharCount>72921</pdfCharCount>
<pdfPageCount>18</pdfPageCount>
<abstractWordCount>290</abstractWordCount>
</qualityIndicators>
<title>Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>109</volume>
<pages>
<total>17</total>
<last>n/a</last>
<first>n/a</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>D12</issue>
<subject>
<json:item>
<value>Composition and Chemistry</value>
</json:item>
<json:item>
<value>ATMOSPHERIC COMPOSITION AND STRUCTURE</value>
</json:item>
<json:item>
<value>Pollution: urban and regional</value>
</json:item>
<json:item>
<value>Troposphere: composition and chemistry</value>
</json:item>
<json:item>
<value>Troposphere: constituent transport and chemistry</value>
</json:item>
<json:item>
<value>Aerosols and particles</value>
</json:item>
<json:item>
<value>BIOGEOSCIENCES</value>
</json:item>
<json:item>
<value>Pollution: urban, regional and global</value>
</json:item>
<json:item>
<value>OCEANOGRAPHY: GENERAL</value>
</json:item>
<json:item>
<value>Marine pollution</value>
</json:item>
<json:item>
<value>NATURAL HAZARDS</value>
</json:item>
<json:item>
<value>Megacities and urban environment</value>
</json:item>
<json:item>
<value>Composition and Chemistry</value>
</json:item>
</subject>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Atmospheres</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202d</json:string>
</doi>
</host>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1029/2003JD004211</json:string>
</doi>
<id>C6ACAD873B75E90F0A05DD5C7F490F53988341F3</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/C6ACAD873B75E90F0A05DD5C7F490F53988341F3/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/C6ACAD873B75E90F0A05DD5C7F490F53988341F3/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C6ACAD873B75E90F0A05DD5C7F490F53988341F3/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2004</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry</title>
<author>
<persName>
<forename type="first">Andreas</forename>
<surname>Geyer</surname>
</persName>
<affiliation>Department of Atmospheric Sciences, University of California, California, Los Angeles, USA</affiliation>
</author>
<author>
<persName>
<forename type="first">Jochen</forename>
<surname>Stutz</surname>
</persName>
<email>jochen@atmos.ucla.edu</email>
<affiliation>Department of Atmospheric Sciences, University of California, California, Los Angeles, USA</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202d</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2004-06-27"></date>
<biblScope unit="volume">109</biblScope>
<biblScope unit="issue">D12</biblScope>
<biblScope unit="page" from="n/a">n/a</biblScope>
<biblScope unit="page" to="n/a">n/a</biblScope>
</imprint>
</monogr>
<idno type="istex">C6ACAD873B75E90F0A05DD5C7F490F53988341F3</idno>
<idno type="DOI">10.1029/2003JD004211</idno>
<idno type="ArticleID">2003JD004211</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Recent field observations in urban areas have shown that trace gases, such as O3, NO2, and NO3, develop distinct vertical concentration profiles at night. Because nocturnal chemistry can change the gas‐phase and particulate composition in the urban boundary layer considerably, it is important to understand the mechanisms that lead to the change of trace gas levels with altitude. The quantification of the altitude dependence of chemical processes leading to the removal of volatile organic carbons (VOC) and NOx are crucial to assess the influence of nocturnal chemistry on ozone formation during the following day. We present a one‐dimensional chemical transport model developed to study the interaction between chemistry and vertical transport in the nocturnal boundary layer. The model reproduces the general features found in field observations, such as positive O3 and NO3 gradients. The slow upward transport of NO and VOC emitted near the ground and the simultaneously occurring chemistry, in particular the reactions of NO with O3 and NO3, are found to control the vertical structure of the chemistry of NOx, NO3, N2O5, and VOC. In the case of NO2 and O3, dry deposition is also significant. The model results show that vertical transport of N2O5 plays an important role, and is often the main source of NO3 radicals near the ground. Chemical steady state calculations of the concentrations of NO3 and N2O5, as they have been used in the past, are therefore not representative in cases with significant vertical fluxes of N2O5. The vertical gradient of the oxidation rate of NO2 implies that the removal of NOx occurs predominately in the upper nocturnal boundary layer (NBL). Our study shows that observations at one altitude and chemical box models are often insufficient to accurately describe the chemistry in NBL.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>nocturnal chemistry</term>
</item>
<item>
<term>nitrate radical</term>
</item>
<item>
<term>vertical transport</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Index Terms</head>
<item>
<term>Composition and Chemistry</term>
</item>
<item>
<term>ATMOSPHERIC COMPOSITION AND STRUCTURE</term>
</item>
<item>
<term>Pollution: urban and regional</term>
</item>
<item>
<term>Troposphere: composition and chemistry</term>
</item>
<item>
<term>Troposphere: constituent transport and chemistry</term>
</item>
<item>
<term>Aerosols and particles</term>
</item>
<item>
<term>BIOGEOSCIENCES</term>
</item>
<item>
<term>Pollution: urban, regional and global</term>
</item>
<item>
<term>OCEANOGRAPHY: GENERAL</term>
</item>
<item>
<term>Marine pollution</term>
</item>
<item>
<term>NATURAL HAZARDS</term>
</item>
<item>
<term>Megacities and urban environment</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Composition and Chemistry</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-10-02">Received</change>
<change when="2004-03-31">Registration</change>
<change when="2004-06-27">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/C6ACAD873B75E90F0A05DD5C7F490F53988341F3/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrd11045">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202d</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRD"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES">Journal of Geophysical Research: Atmospheres</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="120">
<doi>10.1002/jgrd.v109.D12</doi>
<idGroup>
<id type="focusSection" value="4"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Atmospheres</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="109">109</numbering>
<numbering type="journalIssue">D12</numbering>
</numberingGroup>
<coverDate startDate="2004-06-27">27 June 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="110" type="article" status="forIssue">
<doi>10.1029/2003JD004211</doi>
<idGroup>
<id type="editorialOffice" value="2003JD004211"></id>
<id type="society" value="D12307"></id>
<id type="unit" value="JGRD11045"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="17"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Composition and Chemistry</title>
<title type="tocHeading1">Composition and Chemistry</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2004 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2003-10-02"></event>
<event type="manuscriptRevised" date="2004-03-08"></event>
<event type="manuscriptAccepted" date="2004-03-31"></event>
<event type="firstOnline" date="2004-06-30"></event>
<event type="publishedOnlineFinalForm" date="2004-06-30"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.43_TO_WileyML3Gv1.0.3 version:1.1; AGU2WileyML3G Final Clean Up v1.0; WileyML 3G Packaging Tool v1.0" date="2013-01-12"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/subset/ACH">Composition and Chemistry</subject>
<subject href="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/0345">Pollution: urban and regional</subject>
<subject href="http://psi.agu.org/taxonomy5/0365">Troposphere: composition and chemistry</subject>
<subject href="http://psi.agu.org/taxonomy5/0368">Troposphere: constituent transport and chemistry</subject>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0305">Aerosols and particles</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/0478">Pollution: urban, regional and global</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4251">Marine pollution</subject>
</subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</subject>
<subjectInfo>
<subject role="crossTerm" href="http://psi.agu.org/taxonomy5/4325">Megacities and urban environment</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrd11045-cit-0000" type="self">
<author>
<familyName>Geyer</familyName>
,
<givenNames>A.</givenNames>
</author>
, and
<author>
<givenNames>J.</givenNames>
<familyName>Stutz</familyName>
</author>
(
<pubYear year="2004">2004</pubYear>
),
<articleTitle>Vertical profiles of NO
<sub>3</sub>
, N
<sub>2</sub>
O
<sub>5</sub>
, O
<sub>3</sub>
, and NO
<sub>x</sub>
in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>109</vol>
, D12307, doi:
<accessionId ref="info:doi/10.1029/2003JD004211">10.1029/2003JD004211</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRD.JGRD11045.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="10"></count>
<count type="tableTotal" number="3"></count>
</countGroup>
<titleGroup>
<title type="main">Vertical profiles of NO
<sub>3</sub>
, N
<sub>2</sub>
O
<sub>5</sub>
, O
<sub>3</sub>
, and NO
<sub>x</sub>
in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry</title>
<title type="short">MODELING OF NOCTURNAL TRACE GAS PROFILES</title>
<title type="shortAuthors">Geyer and Stutz</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrd11045-cr-0001" affiliationRef="#jgrd11045-aff-0001">
<personName>
<givenNames>Andreas</givenNames>
<familyName>Geyer</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="jgrd11045-cr-0002" affiliationRef="#jgrd11045-aff-0001">
<personName>
<givenNames>Jochen</givenNames>
<familyName>Stutz</familyName>
</personName>
<contactDetails>
<email normalForm="jochen@atmos.ucla.edu">jochen@atmos.ucla.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="jgrd11045-aff-0001">
<orgDiv>Department of Atmospheric Sciences</orgDiv>
<orgName>University of California</orgName>
<address>
<city>Los Angeles</city>
<countryPart>California</countryPart>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrd11045-kwd-0001">nocturnal chemistry</keyword>
<keyword xml:id="jgrd11045-kwd-0002">nitrate radical</keyword>
<keyword xml:id="jgrd11045-kwd-0003">vertical transport</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrd11045-para-0001" label="1">Recent field observations in urban areas have shown that trace gases, such as O
<sub>3</sub>
, NO
<sub>2</sub>
, and NO
<sub>3</sub>
, develop distinct vertical concentration profiles at night. Because nocturnal chemistry can change the gas‐phase and particulate composition in the urban boundary layer considerably, it is important to understand the mechanisms that lead to the change of trace gas levels with altitude. The quantification of the altitude dependence of chemical processes leading to the removal of volatile organic carbons (VOC) and NO
<sub>x</sub>
are crucial to assess the influence of nocturnal chemistry on ozone formation during the following day. We present a one‐dimensional chemical transport model developed to study the interaction between chemistry and vertical transport in the nocturnal boundary layer. The model reproduces the general features found in field observations, such as positive O
<sub>3</sub>
and NO
<sub>3</sub>
gradients. The slow upward transport of NO and VOC emitted near the ground and the simultaneously occurring chemistry, in particular the reactions of NO with O
<sub>3</sub>
and NO
<sub>3</sub>
, are found to control the vertical structure of the chemistry of NO
<sub>x</sub>
, NO
<sub>3</sub>
, N
<sub>2</sub>
O
<sub>5</sub>
, and VOC. In the case of NO
<sub>2</sub>
and O
<sub>3</sub>
, dry deposition is also significant. The model results show that vertical transport of N
<sub>2</sub>
O
<sub>5</sub>
plays an important role, and is often the main source of NO
<sub>3</sub>
radicals near the ground. Chemical steady state calculations of the concentrations of NO
<sub>3</sub>
and N
<sub>2</sub>
O
<sub>5</sub>
, as they have been used in the past, are therefore not representative in cases with significant vertical fluxes of N
<sub>2</sub>
O
<sub>5</sub>
. The vertical gradient of the oxidation rate of NO
<sub>2</sub>
implies that the removal of NO
<sub>x</sub>
occurs predominately in the upper nocturnal boundary layer (NBL). Our study shows that observations at one altitude and chemical box models are often insufficient to accurately describe the chemistry in NBL.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup xml:id="jgrd11045-ntgp-0000">
<note xml:id="jgrd11045-note-0000">
<p xml:id="jgrd11045-para-0000">This is part of DOI:
<accessionId ref="info:doi/10.1029/2003JD004209">10.1029/2003JD004209</accessionId>
.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>MODELING OF NOCTURNAL TRACE GAS PROFILES</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Vertical profiles of NO</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Geyer</namePart>
<affiliation>Department of Atmospheric Sciences, University of California, California, Los Angeles, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jochen</namePart>
<namePart type="family">Stutz</namePart>
<affiliation>Department of Atmospheric Sciences, University of California, California, Los Angeles, USA</affiliation>
<affiliation>E-mail: jochen@atmos.ucla.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2004-06-27</dateIssued>
<dateCaptured encoding="w3cdtf">2003-10-02</dateCaptured>
<dateValid encoding="w3cdtf">2004-03-31</dateValid>
<edition>Geyer, A., and J. Stutz (2004), Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry, J. Geophys. Res., 109, D12307, doi:10.1029/2003JD004211.</edition>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">10</extent>
<extent unit="tables">3</extent>
</physicalDescription>
<abstract>Recent field observations in urban areas have shown that trace gases, such as O3, NO2, and NO3, develop distinct vertical concentration profiles at night. Because nocturnal chemistry can change the gas‐phase and particulate composition in the urban boundary layer considerably, it is important to understand the mechanisms that lead to the change of trace gas levels with altitude. The quantification of the altitude dependence of chemical processes leading to the removal of volatile organic carbons (VOC) and NOx are crucial to assess the influence of nocturnal chemistry on ozone formation during the following day. We present a one‐dimensional chemical transport model developed to study the interaction between chemistry and vertical transport in the nocturnal boundary layer. The model reproduces the general features found in field observations, such as positive O3 and NO3 gradients. The slow upward transport of NO and VOC emitted near the ground and the simultaneously occurring chemistry, in particular the reactions of NO with O3 and NO3, are found to control the vertical structure of the chemistry of NOx, NO3, N2O5, and VOC. In the case of NO2 and O3, dry deposition is also significant. The model results show that vertical transport of N2O5 plays an important role, and is often the main source of NO3 radicals near the ground. Chemical steady state calculations of the concentrations of NO3 and N2O5, as they have been used in the past, are therefore not representative in cases with significant vertical fluxes of N2O5. The vertical gradient of the oxidation rate of NO2 implies that the removal of NOx occurs predominately in the upper nocturnal boundary layer (NBL). Our study shows that observations at one altitude and chemical box models are often insufficient to accurately describe the chemistry in NBL.</abstract>
<subject>
<genre>Keywords</genre>
<topic>nocturnal chemistry</topic>
<topic>nitrate radical</topic>
<topic>vertical transport</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Atmospheres</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="Journal">journal</genre>
<subject>
<genre>Index Terms</genre>
<topic authorityURI="http://psi.agu.org/subset/ACH">Composition and Chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0300">ATMOSPHERIC COMPOSITION AND STRUCTURE</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0345">Pollution: urban and regional</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0365">Troposphere: composition and chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0368">Troposphere: constituent transport and chemistry</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0305">Aerosols and particles</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0400">BIOGEOSCIENCES</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/0478">Pollution: urban, regional and global</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4200">OCEANOGRAPHY: GENERAL</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4251">Marine pollution</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4300">NATURAL HAZARDS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/4325">Megacities and urban environment</topic>
</subject>
<subject>
<genre>article category</genre>
<topic>Composition and Chemistry</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202d</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRD</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>109</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>D12</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>17</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C6ACAD873B75E90F0A05DD5C7F490F53988341F3</identifier>
<identifier type="DOI">10.1029/2003JD004211</identifier>
<identifier type="ArticleID">2003JD004211</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2004 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001358 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001358 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C6ACAD873B75E90F0A05DD5C7F490F53988341F3
   |texte=   Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 01:23:10 2016. Site generation: Wed Oct 7 18:29:07 2020