Serveur d'exploration sur Heinrich Schütz

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene

Identifieur interne : 000933 ( Main/Corpus ); précédent : 000932; suivant : 000934

Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene

Auteurs : M. Rajalu ; U. C. Müller ; A. Caley ; R. J. Harvey ; P. Poisbeau

Source :

RBID : ISTEX:9ECB1A8D594BA62A0735889783610A4C5B4A8883

English descriptors

Abstract

Synaptic inhibition mediated by GABAA receptors and glycine receptors (GlyRs) in the outer laminae of the spinal cord dorsal horn efficiently filters ascending nociceptive messages, controlling pathological pain symptoms. However, although many studies have utilized transgenic models to study spinal nociceptive processing, very little is known about the development of functional inhibitory synapses onto these interneurons in mice. Here we report that most interneurons in lamina II are placed under phasic control by both GABAergic and glycinergic synapses, a number of which exhibit dual GABA/glycine co‐release. A developmental switch is also apparent: a subpopulation of lamina II interneurons controlled exclusively by either GABAergic or glycinergic synapses becomes detectable only after postnatal days 15 and 21, respectively. Using mice older than postnatal day 21, we also characterized the plastic changes in glycinergic transmission resulting from the inactivation of the GlyR α3 subunit gene, a key player in inflammatory pain pathways. This allowed us to demonstrate that synapses containing GlyR α3 contribute in large part to synaptic inhibition in lamina II. In Glra3 knockout mice, we found that synaptic currents at the remaining glycinergic synapses, containing GlyR α1, showed faster decay kinetics with unchanged amplitudes but increased frequency. These findings explain the absence of any basal nociceptive hypersensitivity in Glra3 knockout mice, as GlyR α1 is still available for mediating synaptic inhibition at lamina II synapses, but cannot be modulated by the prostaglandin–E‐prostanoid type 2 (EP2) receptor–protein kinase A signalling cascade. Our results clearly demonstrate that presynaptic GABA/glycine release properties are influenced by the nature and complexity of postsynaptic inhibitory receptor subtypes.

Url:
DOI: 10.1111/j.1460-9568.2009.07018.x

Links to Exploration step

ISTEX:9ECB1A8D594BA62A0735889783610A4C5B4A8883

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene</title>
<author>
<name sortKey="Rajalu, M" sort="Rajalu, M" uniqKey="Rajalu M" first="M." last="Rajalu">M. Rajalu</name>
<affiliation>
<mods:affiliation>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, U C" sort="Muller, U C" uniqKey="Muller U" first="U. C." last="Müller">U. C. Müller</name>
<affiliation>
<mods:affiliation>Max‐Planck‐Institut für Hirnforschung, Abteilung Neurochemie, Frankfurt am Main, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Caley, A" sort="Caley, A" uniqKey="Caley A" first="A." last="Caley">A. Caley</name>
<affiliation>
<mods:affiliation>Department of Pharmacology, The School of Pharmacy, London, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harvey, R J" sort="Harvey, R J" uniqKey="Harvey R" first="R. J." last="Harvey">R. J. Harvey</name>
<affiliation>
<mods:affiliation>Department of Pharmacology, The School of Pharmacy, London, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poisbeau, P" sort="Poisbeau, P" uniqKey="Poisbeau P" first="P." last="Poisbeau">P. Poisbeau</name>
<affiliation>
<mods:affiliation>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:9ECB1A8D594BA62A0735889783610A4C5B4A8883</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1111/j.1460-9568.2009.07018.x</idno>
<idno type="url">https://api.istex.fr/document/9ECB1A8D594BA62A0735889783610A4C5B4A8883/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000933</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene</title>
<author>
<name sortKey="Rajalu, M" sort="Rajalu, M" uniqKey="Rajalu M" first="M." last="Rajalu">M. Rajalu</name>
<affiliation>
<mods:affiliation>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, U C" sort="Muller, U C" uniqKey="Muller U" first="U. C." last="Müller">U. C. Müller</name>
<affiliation>
<mods:affiliation>Max‐Planck‐Institut für Hirnforschung, Abteilung Neurochemie, Frankfurt am Main, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Caley, A" sort="Caley, A" uniqKey="Caley A" first="A." last="Caley">A. Caley</name>
<affiliation>
<mods:affiliation>Department of Pharmacology, The School of Pharmacy, London, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harvey, R J" sort="Harvey, R J" uniqKey="Harvey R" first="R. J." last="Harvey">R. J. Harvey</name>
<affiliation>
<mods:affiliation>Department of Pharmacology, The School of Pharmacy, London, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Poisbeau, P" sort="Poisbeau, P" uniqKey="Poisbeau P" first="P." last="Poisbeau">P. Poisbeau</name>
<affiliation>
<mods:affiliation>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">European Journal of Neuroscience</title>
<idno type="ISSN">0953-816X</idno>
<idno type="eISSN">1460-9568</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2009-12">2009-12</date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="2284">2284</biblScope>
<biblScope unit="page" to="2292">2292</biblScope>
</imprint>
<idno type="ISSN">0953-816X</idno>
</series>
<idno type="istex">9ECB1A8D594BA62A0735889783610A4C5B4A8883</idno>
<idno type="DOI">10.1111/j.1460-9568.2009.07018.x</idno>
<idno type="ArticleID">EJN7018</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0953-816X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>GABAA receptors</term>
<term>glycine receptor</term>
<term>inhibitory transmission</term>
<term>pain pathways</term>
<term>spinal dorsal horn neurons</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Synaptic inhibition mediated by GABAA receptors and glycine receptors (GlyRs) in the outer laminae of the spinal cord dorsal horn efficiently filters ascending nociceptive messages, controlling pathological pain symptoms. However, although many studies have utilized transgenic models to study spinal nociceptive processing, very little is known about the development of functional inhibitory synapses onto these interneurons in mice. Here we report that most interneurons in lamina II are placed under phasic control by both GABAergic and glycinergic synapses, a number of which exhibit dual GABA/glycine co‐release. A developmental switch is also apparent: a subpopulation of lamina II interneurons controlled exclusively by either GABAergic or glycinergic synapses becomes detectable only after postnatal days 15 and 21, respectively. Using mice older than postnatal day 21, we also characterized the plastic changes in glycinergic transmission resulting from the inactivation of the GlyR α3 subunit gene, a key player in inflammatory pain pathways. This allowed us to demonstrate that synapses containing GlyR α3 contribute in large part to synaptic inhibition in lamina II. In Glra3 knockout mice, we found that synaptic currents at the remaining glycinergic synapses, containing GlyR α1, showed faster decay kinetics with unchanged amplitudes but increased frequency. These findings explain the absence of any basal nociceptive hypersensitivity in Glra3 knockout mice, as GlyR α1 is still available for mediating synaptic inhibition at lamina II synapses, but cannot be modulated by the prostaglandin–E‐prostanoid type 2 (EP2) receptor–protein kinase A signalling cascade. Our results clearly demonstrate that presynaptic GABA/glycine release properties are influenced by the nature and complexity of postsynaptic inhibitory receptor subtypes.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>M. Rajalu</name>
<affiliations>
<json:string>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>U. C. Müller</name>
<affiliations>
<json:string>Max‐Planck‐Institut für Hirnforschung, Abteilung Neurochemie, Frankfurt am Main, Germany</json:string>
<json:string>Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>A. Caley</name>
<affiliations>
<json:string>Department of Pharmacology, The School of Pharmacy, London, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>R. J. Harvey</name>
<affiliations>
<json:string>Department of Pharmacology, The School of Pharmacy, London, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. Poisbeau</name>
<affiliations>
<json:string>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>GABAA receptors</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glycine receptor</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>inhibitory transmission</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pain pathways</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>spinal dorsal horn neurons</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>Synaptic inhibition mediated by GABAA receptors and glycine receptors (GlyRs) in the outer laminae of the spinal cord dorsal horn efficiently filters ascending nociceptive messages, controlling pathological pain symptoms. However, although many studies have utilized transgenic models to study spinal nociceptive processing, very little is known about the development of functional inhibitory synapses onto these interneurons in mice. Here we report that most interneurons in lamina II are placed under phasic control by both GABAergic and glycinergic synapses, a number of which exhibit dual GABA/glycine co‐release. A developmental switch is also apparent: a subpopulation of lamina II interneurons controlled exclusively by either GABAergic or glycinergic synapses becomes detectable only after postnatal days 15 and 21, respectively. Using mice older than postnatal day 21, we also characterized the plastic changes in glycinergic transmission resulting from the inactivation of the GlyR α3 subunit gene, a key player in inflammatory pain pathways. This allowed us to demonstrate that synapses containing GlyR α3 contribute in large part to synaptic inhibition in lamina II. In Glra3 knockout mice, we found that synaptic currents at the remaining glycinergic synapses, containing GlyR α1, showed faster decay kinetics with unchanged amplitudes but increased frequency. These findings explain the absence of any basal nociceptive hypersensitivity in Glra3 knockout mice, as GlyR α1 is still available for mediating synaptic inhibition at lamina II synapses, but cannot be modulated by the prostaglandin–E‐prostanoid type 2 (EP2) receptor–protein kinase A signalling cascade. Our results clearly demonstrate that presynaptic GABA/glycine release properties are influenced by the nature and complexity of postsynaptic inhibitory receptor subtypes.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595.276 x 810.709 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1849</abstractCharCount>
<pdfWordCount>6616</pdfWordCount>
<pdfCharCount>40348</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>260</abstractWordCount>
</qualityIndicators>
<title>Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>30</volume>
<pages>
<total>9</total>
<last>2292</last>
<first>2284</first>
</pages>
<issn>
<json:string>0953-816X</json:string>
</issn>
<issue>12</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1460-9568</json:string>
</eissn>
<title>European Journal of Neuroscience</title>
<doi>
<json:string>10.1111/(ISSN)1460-9568</json:string>
</doi>
</host>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1111/j.1460-9568.2009.07018.x</json:string>
</doi>
<id>9ECB1A8D594BA62A0735889783610A4C5B4A8883</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/9ECB1A8D594BA62A0735889783610A4C5B4A8883/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/9ECB1A8D594BA62A0735889783610A4C5B4A8883/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/9ECB1A8D594BA62A0735889783610A4C5B4A8883/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2009</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene</title>
<author>
<persName>
<forename type="first">M.</forename>
<surname>Rajalu</surname>
</persName>
<affiliation>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</affiliation>
</author>
<author>
<persName>
<forename type="first">U. C.</forename>
<surname>Müller</surname>
</persName>
<affiliation>Max‐Planck‐Institut für Hirnforschung, Abteilung Neurochemie, Frankfurt am Main, Germany</affiliation>
<affiliation>Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany</affiliation>
</author>
<author>
<persName>
<forename type="first">A.</forename>
<surname>Caley</surname>
</persName>
<affiliation>Department of Pharmacology, The School of Pharmacy, London, UK</affiliation>
</author>
<author>
<persName>
<forename type="first">R. J.</forename>
<surname>Harvey</surname>
</persName>
<affiliation>Department of Pharmacology, The School of Pharmacy, London, UK</affiliation>
</author>
<author>
<persName>
<forename type="first">P.</forename>
<surname>Poisbeau</surname>
</persName>
<affiliation>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">European Journal of Neuroscience</title>
<idno type="pISSN">0953-816X</idno>
<idno type="eISSN">1460-9568</idno>
<idno type="DOI">10.1111/(ISSN)1460-9568</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2009-12"></date>
<biblScope unit="volume">30</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="2284">2284</biblScope>
<biblScope unit="page" to="2292">2292</biblScope>
</imprint>
</monogr>
<idno type="istex">9ECB1A8D594BA62A0735889783610A4C5B4A8883</idno>
<idno type="DOI">10.1111/j.1460-9568.2009.07018.x</idno>
<idno type="ArticleID">EJN7018</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2009</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Synaptic inhibition mediated by GABAA receptors and glycine receptors (GlyRs) in the outer laminae of the spinal cord dorsal horn efficiently filters ascending nociceptive messages, controlling pathological pain symptoms. However, although many studies have utilized transgenic models to study spinal nociceptive processing, very little is known about the development of functional inhibitory synapses onto these interneurons in mice. Here we report that most interneurons in lamina II are placed under phasic control by both GABAergic and glycinergic synapses, a number of which exhibit dual GABA/glycine co‐release. A developmental switch is also apparent: a subpopulation of lamina II interneurons controlled exclusively by either GABAergic or glycinergic synapses becomes detectable only after postnatal days 15 and 21, respectively. Using mice older than postnatal day 21, we also characterized the plastic changes in glycinergic transmission resulting from the inactivation of the GlyR α3 subunit gene, a key player in inflammatory pain pathways. This allowed us to demonstrate that synapses containing GlyR α3 contribute in large part to synaptic inhibition in lamina II. In Glra3 knockout mice, we found that synaptic currents at the remaining glycinergic synapses, containing GlyR α1, showed faster decay kinetics with unchanged amplitudes but increased frequency. These findings explain the absence of any basal nociceptive hypersensitivity in Glra3 knockout mice, as GlyR α1 is still available for mediating synaptic inhibition at lamina II synapses, but cannot be modulated by the prostaglandin–E‐prostanoid type 2 (EP2) receptor–protein kinase A signalling cascade. Our results clearly demonstrate that presynaptic GABA/glycine release properties are influenced by the nature and complexity of postsynaptic inhibitory receptor subtypes.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>GABAA receptors</term>
</item>
<item>
<term>glycine receptor</term>
</item>
<item>
<term>inhibitory transmission</term>
</item>
<item>
<term>pain pathways</term>
</item>
<item>
<term>spinal dorsal horn neurons</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2009-12">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/9ECB1A8D594BA62A0735889783610A4C5B4A8883/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1460-9568</doi>
<issn type="print">0953-816X</issn>
<issn type="electronic">1460-9568</issn>
<idGroup>
<id type="product" value="EJN"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="EUROPEAN JOURNAL OF NEUROSCIENCE">European Journal of Neuroscience</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="12012">
<doi origin="wiley">10.1111/ejn.2009.30.issue-12</doi>
<numberingGroup>
<numbering type="journalVolume" number="30">30</numbering>
<numbering type="journalIssue" number="12">12</numbering>
</numberingGroup>
<coverDate startDate="2009-12">December 2009</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="6" status="forIssue">
<doi origin="wiley">10.1111/j.1460-9568.2009.07018.x</doi>
<idGroup>
<id type="unit" value="EJN7018"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">SYNAPTIC MECHANISMS</title>
</titleGroup>
<copyright>© The Authors (2009). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="firstOnline" date="2009-12-10"></event>
<event type="publishedOnlineFinalForm" date="2009-12-15"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-02"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="2284">2284</numbering>
<numbering type="pageLast" number="2292">2292</numbering>
</numberingGroup>
<correspondenceTo>Professor P. Poisbeau, as above.
E‐mail:
<email>poisbeau@unistra.fr</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:EJN.EJN7018.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Received 27 February 2009, revised 6 October 2009, accepted 7 October 2009</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene</title>
<title type="shortAuthors">M. Rajalu
<i>et al.</i>
</title>
<title type="short">Plasticity of synaptic glycine receptors</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>M.</givenNames>
<familyName>Rajalu</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2 #a3">
<personName>
<givenNames>U. C.</givenNames>
<familyName>Müller</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a4">
<personName>
<givenNames>A.</givenNames>
<familyName>Caley</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a4">
<personName>
<givenNames>R. J.</givenNames>
<familyName>Harvey</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a1">
<personName>
<givenNames>P.</givenNames>
<familyName>Poisbeau</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="FR">
<unparsedAffiliation>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="DE">
<unparsedAffiliation>Max‐Planck‐Institut für Hirnforschung, Abteilung Neurochemie, Frankfurt am Main, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="DE">
<unparsedAffiliation>Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="GB">
<unparsedAffiliation>Department of Pharmacology, The School of Pharmacy, London, UK</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">GABA
<sub>A</sub>
receptors</keyword>
<keyword xml:id="k2">glycine receptor</keyword>
<keyword xml:id="k3">inhibitory transmission</keyword>
<keyword xml:id="k4">pain pathways</keyword>
<keyword xml:id="k5">spinal dorsal horn neurons</keyword>
</keywordGroup>
<supportingInformation>
<p>
<b>Table S1.</b>
Miniature inhibitory postsynaptic current (mIPSC) properties throughout postnatal development.</p>
<p>
<b>Table S2.</b>
Amplitude contribution of mixed GABA/glycine miniature inhibitory postsynaptic currents (mIPSCs) during development.</p>
<p>
<b>Table S3.</b>
Unitary current and conductance of glycine receptor (GlyR) miniature inhibitory postsynaptic currents (mIPSCs) recorded from adult
<i>Glra3</i>
<sup>+/+</sup>
and
<i>Glra3</i>
<sup>–/–</sup>
mice (six mice per group).</p>
<p>As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer‐reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset by Wiley‐Blackwell. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.</p>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:0953816X:media:ejn7018:EJN_7018_sm_TableS1"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:0953816X:media:ejn7018:EJN_7018_sm_TableS2"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supporting info item" href="urn-x:wiley:0953816X:media:ejn7018:EJN_7018_sm_TableS3"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Synaptic inhibition mediated by GABA
<sub>A</sub>
receptors and glycine receptors (GlyRs) in the outer laminae of the spinal cord dorsal horn efficiently filters ascending nociceptive messages, controlling pathological pain symptoms. However, although many studies have utilized transgenic models to study spinal nociceptive processing, very little is known about the development of functional inhibitory synapses onto these interneurons in mice. Here we report that most interneurons in lamina II are placed under phasic control by both GABAergic and glycinergic synapses, a number of which exhibit dual GABA/glycine co‐release. A developmental switch is also apparent: a subpopulation of lamina II interneurons controlled exclusively by either GABAergic or glycinergic synapses becomes detectable only after postnatal days 15 and 21, respectively. Using mice older than postnatal day 21, we also characterized the plastic changes in glycinergic transmission resulting from the inactivation of the GlyR α3 subunit gene, a key player in inflammatory pain pathways. This allowed us to demonstrate that synapses containing GlyR α3 contribute in large part to synaptic inhibition in lamina II. In
<i>Glra3</i>
knockout mice, we found that synaptic currents at the remaining glycinergic synapses, containing GlyR α1, showed faster decay kinetics with unchanged amplitudes but increased frequency. These findings explain the absence of any basal nociceptive hypersensitivity in
<i>Glra3</i>
knockout mice, as GlyR α1 is still available for mediating synaptic inhibition at lamina II synapses, but cannot be modulated by the prostaglandin–E‐prostanoid type 2 (EP2) receptor–protein kinase A signalling cascade. Our results clearly demonstrate that presynaptic GABA/glycine release properties are influenced by the nature and complexity of postsynaptic inhibitory receptor subtypes.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Plasticity of synaptic glycine receptors</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene</title>
</titleInfo>
<name type="personal">
<namePart type="given">M.</namePart>
<namePart type="family">Rajalu</namePart>
<affiliation>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">U. C.</namePart>
<namePart type="family">Müller</namePart>
<affiliation>Max‐Planck‐Institut für Hirnforschung, Abteilung Neurochemie, Frankfurt am Main, Germany</affiliation>
<affiliation>Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A.</namePart>
<namePart type="family">Caley</namePart>
<affiliation>Department of Pharmacology, The School of Pharmacy, London, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R. J.</namePart>
<namePart type="family">Harvey</namePart>
<affiliation>Department of Pharmacology, The School of Pharmacy, London, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Poisbeau</namePart>
<affiliation>Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique/Université des Strasbourg, UPR 3212 CNRS, Department of Nociception & Pain, 21 rue René Descartes, 67084 Strasbourg cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2009-12</dateIssued>
<edition>Received 27 February 2009, revised 6 October 2009, accepted 7 October 2009</edition>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">6</extent>
</physicalDescription>
<abstract lang="en">Synaptic inhibition mediated by GABAA receptors and glycine receptors (GlyRs) in the outer laminae of the spinal cord dorsal horn efficiently filters ascending nociceptive messages, controlling pathological pain symptoms. However, although many studies have utilized transgenic models to study spinal nociceptive processing, very little is known about the development of functional inhibitory synapses onto these interneurons in mice. Here we report that most interneurons in lamina II are placed under phasic control by both GABAergic and glycinergic synapses, a number of which exhibit dual GABA/glycine co‐release. A developmental switch is also apparent: a subpopulation of lamina II interneurons controlled exclusively by either GABAergic or glycinergic synapses becomes detectable only after postnatal days 15 and 21, respectively. Using mice older than postnatal day 21, we also characterized the plastic changes in glycinergic transmission resulting from the inactivation of the GlyR α3 subunit gene, a key player in inflammatory pain pathways. This allowed us to demonstrate that synapses containing GlyR α3 contribute in large part to synaptic inhibition in lamina II. In Glra3 knockout mice, we found that synaptic currents at the remaining glycinergic synapses, containing GlyR α1, showed faster decay kinetics with unchanged amplitudes but increased frequency. These findings explain the absence of any basal nociceptive hypersensitivity in Glra3 knockout mice, as GlyR α1 is still available for mediating synaptic inhibition at lamina II synapses, but cannot be modulated by the prostaglandin–E‐prostanoid type 2 (EP2) receptor–protein kinase A signalling cascade. Our results clearly demonstrate that presynaptic GABA/glycine release properties are influenced by the nature and complexity of postsynaptic inhibitory receptor subtypes.</abstract>
<subject lang="en">
<genre>Keywords</genre>
<topic>GABAA receptors</topic>
<topic>glycine receptor</topic>
<topic>inhibitory transmission</topic>
<topic>pain pathways</topic>
<topic>spinal dorsal horn neurons</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>European Journal of Neuroscience</title>
</titleInfo>
<genre type="Journal">journal</genre>
<note type="content"> Table S1. Miniature inhibitory postsynaptic current (mIPSC) properties throughout postnatal development. Table S2. Amplitude contribution of mixed GABA/glycine miniature inhibitory postsynaptic currents (mIPSCs) during development. Table S3. Unitary current and conductance of glycine receptor (GlyR) miniature inhibitory postsynaptic currents (mIPSCs) recorded from adult Glra3+/+ and Glra3–/– mice (six mice per group). As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer‐reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset by Wiley‐Blackwell. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Table S1. Miniature inhibitory postsynaptic current (mIPSC) properties throughout postnatal development. Table S2. Amplitude contribution of mixed GABA/glycine miniature inhibitory postsynaptic currents (mIPSCs) during development. Table S3. Unitary current and conductance of glycine receptor (GlyR) miniature inhibitory postsynaptic currents (mIPSCs) recorded from adult Glra3+/+ and Glra3–/– mice (six mice per group). As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer‐reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset by Wiley‐Blackwell. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Table S1. Miniature inhibitory postsynaptic current (mIPSC) properties throughout postnatal development. Table S2. Amplitude contribution of mixed GABA/glycine miniature inhibitory postsynaptic currents (mIPSCs) during development. Table S3. Unitary current and conductance of glycine receptor (GlyR) miniature inhibitory postsynaptic currents (mIPSCs) recorded from adult Glra3+/+ and Glra3–/– mice (six mice per group). As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer‐reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset by Wiley‐Blackwell. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Table S1. Miniature inhibitory postsynaptic current (mIPSC) properties throughout postnatal development. Table S2. Amplitude contribution of mixed GABA/glycine miniature inhibitory postsynaptic currents (mIPSCs) during development. Table S3. Unitary current and conductance of glycine receptor (GlyR) miniature inhibitory postsynaptic currents (mIPSCs) recorded from adult Glra3+/+ and Glra3–/– mice (six mice per group). As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer‐reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset by Wiley‐Blackwell. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.Supporting Info Item: Supporting info item - Supporting info item - Supporting info item - </note>
<identifier type="ISSN">0953-816X</identifier>
<identifier type="eISSN">1460-9568</identifier>
<identifier type="DOI">10.1111/(ISSN)1460-9568</identifier>
<identifier type="PublisherID">EJN</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>2284</start>
<end>2292</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">9ECB1A8D594BA62A0735889783610A4C5B4A8883</identifier>
<identifier type="DOI">10.1111/j.1460-9568.2009.07018.x</identifier>
<identifier type="ArticleID">EJN7018</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© The Authors (2009). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/SchutzV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000933 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000933 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    SchutzV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:9ECB1A8D594BA62A0735889783610A4C5B4A8883
   |texte=   Plasticity of synaptic inhibition in mouse spinal cord lamina II neurons during early postnatal development and after inactivation of the glycine receptor α3 subunit gene
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 01:23:10 2016. Site generation: Wed Oct 7 18:29:07 2020