Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.

Identifieur interne : 000310 ( PubMed/Curation ); précédent : 000309; suivant : 000311

Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.

Auteurs : Aniruddh D. Patel [États-Unis]

Source :

RBID : pubmed:21747773

Abstract

Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The "OPERA" hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brain networks that process an acoustic feature used in both music and speech (e.g., waveform periodicity, amplitude envelope), (2) Precision: music places higher demands on these shared networks than does speech, in terms of the precision of processing, (3) Emotion: the musical activities that engage this network elicit strong positive emotion, (4) Repetition: the musical activities that engage this network are frequently repeated, and (5) Attention: the musical activities that engage this network are associated with focused attention. According to the OPERA hypothesis, when these conditions are met neural plasticity drives the networks in question to function with higher precision than needed for ordinary speech communication. Yet since speech shares these networks with music, speech processing benefits. The OPERA hypothesis is used to account for the observed superior subcortical encoding of speech in musically trained individuals, and to suggest mechanisms by which musical training might improve linguistic reading abilities.

DOI: 10.3389/fpsyg.2011.00142
PubMed: 21747773

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21747773

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.</title>
<author>
<name sortKey="Patel, Aniruddh D" sort="Patel, Aniruddh D" uniqKey="Patel A" first="Aniruddh D" last="Patel">Aniruddh D. Patel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Theoretical Neurobiology, The Neurosciences Institute San Diego, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Theoretical Neurobiology, The Neurosciences Institute San Diego, CA</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.3389/fpsyg.2011.00142</idno>
<idno type="RBID">pubmed:21747773</idno>
<idno type="pmid">21747773</idno>
<idno type="wicri:Area/PubMed/Corpus">000310</idno>
<idno type="wicri:Area/PubMed/Curation">000310</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.</title>
<author>
<name sortKey="Patel, Aniruddh D" sort="Patel, Aniruddh D" uniqKey="Patel A" first="Aniruddh D" last="Patel">Aniruddh D. Patel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Theoretical Neurobiology, The Neurosciences Institute San Diego, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Theoretical Neurobiology, The Neurosciences Institute San Diego, CA</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in psychology</title>
<idno type="e-ISSN">1664-1078</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The "OPERA" hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brain networks that process an acoustic feature used in both music and speech (e.g., waveform periodicity, amplitude envelope), (2) Precision: music places higher demands on these shared networks than does speech, in terms of the precision of processing, (3) Emotion: the musical activities that engage this network elicit strong positive emotion, (4) Repetition: the musical activities that engage this network are frequently repeated, and (5) Attention: the musical activities that engage this network are associated with focused attention. According to the OPERA hypothesis, when these conditions are met neural plasticity drives the networks in question to function with higher precision than needed for ordinary speech communication. Yet since speech shares these networks with music, speech processing benefits. The OPERA hypothesis is used to account for the observed superior subcortical encoding of speech in musically trained individuals, and to suggest mechanisms by which musical training might improve linguistic reading abilities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">21747773</PMID>
<DateCreated>
<Year>2011</Year>
<Month>07</Month>
<Day>12</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1664-1078</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in psychology</Title>
<ISOAbbreviation>Front Psychol</ISOAbbreviation>
</Journal>
<ArticleTitle>Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.</ArticleTitle>
<Pagination>
<MedlinePgn>142</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpsyg.2011.00142</ELocationID>
<Abstract>
<AbstractText>Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The "OPERA" hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brain networks that process an acoustic feature used in both music and speech (e.g., waveform periodicity, amplitude envelope), (2) Precision: music places higher demands on these shared networks than does speech, in terms of the precision of processing, (3) Emotion: the musical activities that engage this network elicit strong positive emotion, (4) Repetition: the musical activities that engage this network are frequently repeated, and (5) Attention: the musical activities that engage this network are associated with focused attention. According to the OPERA hypothesis, when these conditions are met neural plasticity drives the networks in question to function with higher precision than needed for ordinary speech communication. Yet since speech shares these networks with music, speech processing benefits. The OPERA hypothesis is used to account for the observed superior subcortical encoding of speech in musically trained individuals, and to suggest mechanisms by which musical training might improve linguistic reading abilities.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Patel</LastName>
<ForeName>Aniruddh D</ForeName>
<Initials>AD</Initials>
<AffiliationInfo>
<Affiliation>Department of Theoretical Neurobiology, The Neurosciences Institute San Diego, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Psychol</MedlineTA>
<NlmUniqueID>101550902</NlmUniqueID>
<ISSNLinking>1664-1078</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2006 Jul;29(7):382-90</RefSource>
<PMID Version="1">16806512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 2007 Jul;229(1-2):54-68</RefSource>
<PMID Version="1">17344002</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2007 Apr;10(4):420-2</RefSource>
<PMID Version="1">17351633</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2007 May;8(5):393-402</RefSource>
<PMID Version="1">17431404</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Psychol. 1997;48:115-38</RefSource>
<PMID Version="1">9046557</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1998 Mar 13;279(5357):1714-8</RefSource>
<PMID Version="1">9497289</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2007 Sep;11(9):369-72</RefSource>
<PMID Version="1">17698406</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Hum Genet. 2007 Sep;81(3):582-8</RefSource>
<PMID Version="1">17701903</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2008 Mar 12;363(1493):1087-104</RefSource>
<PMID Version="1">17890188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15894-8</RefSource>
<PMID Version="1">17898180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2011 Jan;15(1):3-10</RefSource>
<PMID Version="1">21093350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 1987 Jul;82(1):88-105</RefSource>
<PMID Version="1">3624645</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11793-9</RefSource>
<PMID Version="1">11050211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13763-8</RefSource>
<PMID Version="1">11698650</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2002 Apr;87(4):1723-37</RefSource>
<PMID Version="1">11929894</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10911-6</RefSource>
<PMID Version="1">12142463</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Restor Neurol Neurosci. 2007;25(3-4):263-72</RefSource>
<PMID Version="1">17943004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Restor Neurol Neurosci. 2007;25(3-4):435-43</RefSource>
<PMID Version="1">17943017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Rev. 2007 Nov;56(1):259-69</RefSource>
<PMID Version="1">17950463</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Feb;194(2):169-83</RefSource>
<PMID Version="1">18228080</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2008 Oct;20(10):1892-902</RefSource>
<PMID Version="1">18370594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Apr 9;28(15):3958-65</RefSource>
<PMID Version="1">18400895</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2008 Nov;20(11):1940-51</RefSource>
<PMID Version="1">18416683</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol Paris. 2008 Jan-May;102(1-3):120-9</RefSource>
<PMID Version="1">18448317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 2008 Jul;241(1-2):34-42</RefSource>
<PMID Version="1">18562137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Sep 24;28(39):9632-9</RefSource>
<PMID Version="1">18815249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2009 Mar;19(3):712-23</RefSource>
<PMID Version="1">18832336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Philos Trans R Soc Lond B Biol Sci. 2009 Feb 12;364(1515):285-99</RefSource>
<PMID Version="1">18986968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 2008 Dec;34(6):1609-31</RefSource>
<PMID Version="1">19045996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2009 Feb;29(3):661-8</RefSource>
<PMID Version="1">19222564</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Mar 11;29(10):3019-25</RefSource>
<PMID Version="1">19279238</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2009 Nov;19(11):2699-707</RefSource>
<PMID Version="1">19293398</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2009 Nov;19(11):2728-35</RefSource>
<PMID Version="1">19299253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Phonetica. 2009;66(1-2):113-26</RefSource>
<PMID Version="1">19390234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 May 6;29(18):5832-40</RefSource>
<PMID Version="1">19420250</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2009 May 28;62(4):463-9</RefSource>
<PMID Version="1">19477149</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Jun 17;29(24):7686-93</RefSource>
<PMID Version="1">19535580</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2009 Oct;30(8):1636-42</RefSource>
<PMID Version="1">19821835</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychophysiology. 2010 Mar 1;47(2):236-46</RefSource>
<PMID Version="1">19824950</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Nov 11;29(45):14100-7</RefSource>
<PMID Version="1">19906958</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2009 Nov 12;64(3):311-9</RefSource>
<PMID Version="1">19914180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 2011 Feb;23(2):425-34</RefSource>
<PMID Version="1">19925180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2010 Mar 10;166(1):231-40</RefSource>
<PMID Version="1">20005923</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 2010 Mar;261(1-2):22-9</RefSource>
<PMID Version="1">20018234</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Cogn Sci. 2010 Mar;14(3):131-7</RefSource>
<PMID Version="1">20153242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2010 Jun;133(Pt 6):1682-93</RefSource>
<PMID Version="1">20418275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10389-94</RefSource>
<PMID Version="1">20498069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2010 Aug;11(8):599-605</RefSource>
<PMID Version="1">20648064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cortex. 2011 Jun;47(6):674-89</RefSource>
<PMID Version="1">20843509</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Psychol Sci. 2010 Oct;21(10):1532-40</RefSource>
<PMID Version="1">20935168</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(12):e13812</RefSource>
<PMID Version="1">21179549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2011 Feb;14(2):257-62</RefSource>
<PMID Version="1">21217764</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Psychol Hum Percept Perform. 2011 Jun;37(3):921-34</RefSource>
<PMID Version="1">21261418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(5):e18082</RefSource>
<PMID Version="1">21589653</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 1994 Feb;95(2):1053-64</RefSource>
<PMID Version="1">8132899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1993 Jan;13(1):87-103</RefSource>
<PMID Version="1">8423485</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1996 Sep;76(3):1698-716</RefSource>
<PMID Version="1">8890286</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cognition. 1995 Jun;55(3):269-310</RefSource>
<PMID Version="1">7634761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ear Hear. 2010 Jun;31(3):302-24</RefSource>
<PMID Version="1">20084007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Child Psychol. 2002 Oct;83(2):111-30</RefSource>
<PMID Version="1">12408958</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2003 Jul;6(7):688-91</RefSource>
<PMID Version="1">12830160</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann N Y Acad Sci. 2003 Nov;999:497-505</RefSource>
<PMID Version="1">14681173</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 1992 Nov;92(5):2546-68</RefSource>
<PMID Version="1">1479119</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2004 Sep;115(9):2021-30</RefSource>
<PMID Version="1">15294204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Cogn Brain Res. 2005 Sep;25(1):161-8</RefSource>
<PMID Version="1">15935624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 2005 Aug;206(1-2):159-76</RefSource>
<PMID Version="1">16081006</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Acoust Soc Am. 2005 Jul;118(1):471-82</RefSource>
<PMID Version="1">16119366</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Aug 25;436(7054):1161-5</RefSource>
<PMID Version="1">16121182</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hear Res. 2006 Feb;212(1-2):1-8</RefSource>
<PMID Version="1">16555378</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2006 May 3;26(18):4970-82</RefSource>
<PMID Version="1">16672673</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">PMC3128244</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">hypothesis</Keyword>
<Keyword MajorTopicYN="N">music</Keyword>
<Keyword MajorTopicYN="N">neural encoding</Keyword>
<Keyword MajorTopicYN="N">neural plasticity</Keyword>
<Keyword MajorTopicYN="N">speech</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>3</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>6</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="epublish">
<Year>2011</Year>
<Month>6</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.3389/fpsyg.2011.00142</ArticleId>
<ArticleId IdType="pubmed">21747773</ArticleId>
<ArticleId IdType="pmc">PMC3128244</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000310 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000310 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21747773
   |texte=   Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:21747773" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a OperaV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020