Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimization of multipollutant air quality management strategies: A case study for five cities in the United States.

Identifieur interne : 000079 ( PubMed/Corpus ); précédent : 000078; suivant : 000080

Optimization of multipollutant air quality management strategies: A case study for five cities in the United States.

Auteurs : Kuo-Jen Liao ; Xiangting Hou

Source :

RBID : pubmed:25976486

English descriptors

Abstract

Developing regional air quality management strategies is a difficult task because formation of air pollutants is interdependent and air quality at different locations may have different responses to emissions from common sources. We developed an optimization-based model, OPtimal integrated Emission Reduction Alternatives (OPERA), which allows for identifications of least-cost control strategies for attaining multipollutant air quality targets at multiple locations simultaneously. To implement OPERA, first, sensitivities of air quality to precursor emission changes are quantified. Second, cost functions of emission reductions are estimated using a cost analysis tool that includes a pool of available control measures. The third step is to determine desired reductions in concentrations of air pollutants. The last step is to identify the optimal control strategies by minimizing costs of emission controls using the sensitivities of air pollutants to emission changes, cost functions, and constraints for feasible emission reduction ratios. A case study that investigates ozone and PM2.5 air quality in the summer of 2007 for five major cities in the eastern United States is presented in this paper. The results of the OPERA calculations show that reductions in regional NOx and VOC as well as local primary PM2.5 emissions were more cost-effective than SO2 controls for decreasing ozone and total PM2.5 concentrations in the summer of 2007. This was because reductions in SO2 emissions would only decrease PM2.5 concentrations, and reductions in primary PM2.5 emissions were more cost-effective than SO2 emission controls.

DOI: 10.1080/10962247.2015.1014073
PubMed: 25976486

Links to Exploration step

pubmed:25976486

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimization of multipollutant air quality management strategies: A case study for five cities in the United States.</title>
<author>
<name sortKey="Liao, Kuo Jen" sort="Liao, Kuo Jen" uniqKey="Liao K" first="Kuo-Jen" last="Liao">Kuo-Jen Liao</name>
<affiliation>
<nlm:affiliation>a Department of Environmental Engineering , Texas A&M University-Kingsville , Kingsville , TX , USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hou, Xiangting" sort="Hou, Xiangting" uniqKey="Hou X" first="Xiangting" last="Hou">Xiangting Hou</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="doi">10.1080/10962247.2015.1014073</idno>
<idno type="RBID">pubmed:25976486</idno>
<idno type="pmid">25976486</idno>
<idno type="wicri:Area/PubMed/Corpus">000079</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Optimization of multipollutant air quality management strategies: A case study for five cities in the United States.</title>
<author>
<name sortKey="Liao, Kuo Jen" sort="Liao, Kuo Jen" uniqKey="Liao K" first="Kuo-Jen" last="Liao">Kuo-Jen Liao</name>
<affiliation>
<nlm:affiliation>a Department of Environmental Engineering , Texas A&M University-Kingsville , Kingsville , TX , USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hou, Xiangting" sort="Hou, Xiangting" uniqKey="Hou X" first="Xiangting" last="Hou">Xiangting Hou</name>
</author>
</analytic>
<series>
<title level="j">Journal of the Air & Waste Management Association (1995)</title>
<idno type="ISSN">1096-2247</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air Pollutants (analysis)</term>
<term>Air Pollution (analysis)</term>
<term>Air Pollution (economics)</term>
<term>Air Pollution (prevention & control)</term>
<term>Cities</term>
<term>Environmental Monitoring</term>
<term>Models, Theoretical</term>
<term>Ozone (analysis)</term>
<term>Particulate Matter (analysis)</term>
<term>United States</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Air Pollutants</term>
<term>Ozone</term>
<term>Particulate Matter</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>United States</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Air Pollution</term>
</keywords>
<keywords scheme="MESH" qualifier="economics" xml:lang="en">
<term>Air Pollution</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Air Pollution</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cities</term>
<term>Environmental Monitoring</term>
<term>Models, Theoretical</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Developing regional air quality management strategies is a difficult task because formation of air pollutants is interdependent and air quality at different locations may have different responses to emissions from common sources. We developed an optimization-based model, OPtimal integrated Emission Reduction Alternatives (OPERA), which allows for identifications of least-cost control strategies for attaining multipollutant air quality targets at multiple locations simultaneously. To implement OPERA, first, sensitivities of air quality to precursor emission changes are quantified. Second, cost functions of emission reductions are estimated using a cost analysis tool that includes a pool of available control measures. The third step is to determine desired reductions in concentrations of air pollutants. The last step is to identify the optimal control strategies by minimizing costs of emission controls using the sensitivities of air pollutants to emission changes, cost functions, and constraints for feasible emission reduction ratios. A case study that investigates ozone and PM2.5 air quality in the summer of 2007 for five major cities in the eastern United States is presented in this paper. The results of the OPERA calculations show that reductions in regional NOx and VOC as well as local primary PM2.5 emissions were more cost-effective than SO2 controls for decreasing ozone and total PM2.5 concentrations in the summer of 2007. This was because reductions in SO2 emissions would only decrease PM2.5 concentrations, and reductions in primary PM2.5 emissions were more cost-effective than SO2 emission controls.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25976486</PMID>
<DateCreated>
<Year>2015</Year>
<Month>05</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>29</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1096-2247</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>65</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of the Air & Waste Management Association (1995)</Title>
<ISOAbbreviation>J Air Waste Manag Assoc</ISOAbbreviation>
</Journal>
<ArticleTitle>Optimization of multipollutant air quality management strategies: A case study for five cities in the United States.</ArticleTitle>
<Pagination>
<MedlinePgn>732-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/10962247.2015.1014073</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Developing regional air quality management strategies is a difficult task because formation of air pollutants is interdependent and air quality at different locations may have different responses to emissions from common sources. We developed an optimization-based model, OPtimal integrated Emission Reduction Alternatives (OPERA), which allows for identifications of least-cost control strategies for attaining multipollutant air quality targets at multiple locations simultaneously. To implement OPERA, first, sensitivities of air quality to precursor emission changes are quantified. Second, cost functions of emission reductions are estimated using a cost analysis tool that includes a pool of available control measures. The third step is to determine desired reductions in concentrations of air pollutants. The last step is to identify the optimal control strategies by minimizing costs of emission controls using the sensitivities of air pollutants to emission changes, cost functions, and constraints for feasible emission reduction ratios. A case study that investigates ozone and PM2.5 air quality in the summer of 2007 for five major cities in the eastern United States is presented in this paper. The results of the OPERA calculations show that reductions in regional NOx and VOC as well as local primary PM2.5 emissions were more cost-effective than SO2 controls for decreasing ozone and total PM2.5 concentrations in the summer of 2007. This was because reductions in SO2 emissions would only decrease PM2.5 concentrations, and reductions in primary PM2.5 emissions were more cost-effective than SO2 emission controls.</AbstractText>
<AbstractText Label="IMPLICATIONS" NlmCategory="CONCLUSIONS">We developed an optimization-based model, OPtimal integrated Emission Reduction Alternatives (OPERA), which allows for identification of least-cost emission control strategies for attaining multipollutant air quality targets at multiple locations simultaneously. A major strength of OPERA is its flexibility, which allows for changes in air quality regulations, involving agencies, study regions, and so on, to be readily incorporated. Overall, it has been demonstrated that OPERA is useful in developing least-cost emission control strategies for achieving multipollutant air quality targets at multiple locations simultaneously and could be useful for policymakers developing integrated air quality management plans.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liao</LastName>
<ForeName>Kuo-Jen</ForeName>
<Initials>KJ</Initials>
<AffiliationInfo>
<Affiliation>a Department of Environmental Engineering , Texas A&M University-Kingsville , Kingsville , TX , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hou</LastName>
<ForeName>Xiangting</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Air Waste Manag Assoc</MedlineTA>
<NlmUniqueID>9503111</NlmUniqueID>
<ISSNLinking>1096-2247</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000393">Air Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D052638">Particulate Matter</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>66H7ZZK23N</RegistryNumber>
<NameOfSubstance UI="D010126">Ozone</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000393">Air Pollutants</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000397">Air Pollution</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000032">analysis</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000191">economics</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000517">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D002947">Cities</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D004784">Environmental Monitoring</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008962">Models, Theoretical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010126">Ozone</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D052638">Particulate Matter</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000032">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" Type="Geographic" UI="D014481">United States</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1080/10962247.2015.1014073</ArticleId>
<ArticleId IdType="pubmed">25976486</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000079 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000079 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25976486
   |texte=   Optimization of multipollutant air quality management strategies: A case study for five cities in the United States.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25976486" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OperaV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020