Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Recent therapeutic approaches for spinal cord injury.

Identifieur interne : 000070 ( PubMed/Corpus ); précédent : 000069; suivant : 000071

Recent therapeutic approaches for spinal cord injury.

Auteurs : Andrea Raspa ; Raffaele Pugliese ; Mahboubeh Maleki ; Fabrizio Gelain

Source :

RBID : pubmed:26134352

Abstract

A spinal cord injury (SCI) often causes permanent changes in strength and sensation functions below the site of the injury and affects thousands of people each year. Transplantation of stem cells is a promising approach in acute SCI as it may support spinal cord repair. However, in case of chronic SCI greater amounts of nervous tissue have to be regenerated, leaving scaffold transplantation the only feasible option for cellular engraftment and nervous bridging. The aim of regenerative medicine, specifically tissue engineering, is to create a microenvironment that mimics native extracellular matrix (ECM), capable of promoting specific cell-matrix interactions, coaxing cell behavior, and fostering host tissue regeneration. In this regard, nanostructured scaffolds are currently the most promising advanced substrates capable of supporting nervous fiber ingrowth and delivery of neurotrophic drugs. Among them, electrospinning technique and Self-Assembling Peptides (SAPs) have recently attracted lots of attention for their reproducible synthesis and high tailorability. This review highlights clinical trials and recent encouraging strategies for spinal cord repair comprising both cell therapy and nanomedicine. Biotechnol. Bioeng. 2016;113: 253-259. © 2015 Wiley Periodicals, Inc.

DOI: 10.1002/bit.25689
PubMed: 26134352

Links to Exploration step

pubmed:26134352

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Recent therapeutic approaches for spinal cord injury.</title>
<author>
<name sortKey="Raspa, Andrea" sort="Raspa, Andrea" uniqKey="Raspa A" first="Andrea" last="Raspa">Andrea Raspa</name>
<affiliation>
<nlm:affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pugliese, Raffaele" sort="Pugliese, Raffaele" uniqKey="Pugliese R" first="Raffaele" last="Pugliese">Raffaele Pugliese</name>
<affiliation>
<nlm:affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maleki, Mahboubeh" sort="Maleki, Mahboubeh" uniqKey="Maleki M" first="Mahboubeh" last="Maleki">Mahboubeh Maleki</name>
<affiliation>
<nlm:affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gelain, Fabrizio" sort="Gelain, Fabrizio" uniqKey="Gelain F" first="Fabrizio" last="Gelain">Fabrizio Gelain</name>
<affiliation>
<nlm:affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy. gelain@mit.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26134352</idno>
<idno type="pmid">26134352</idno>
<idno type="doi">10.1002/bit.25689</idno>
<idno type="wicri:Area/PubMed/Corpus">000070</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Recent therapeutic approaches for spinal cord injury.</title>
<author>
<name sortKey="Raspa, Andrea" sort="Raspa, Andrea" uniqKey="Raspa A" first="Andrea" last="Raspa">Andrea Raspa</name>
<affiliation>
<nlm:affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pugliese, Raffaele" sort="Pugliese, Raffaele" uniqKey="Pugliese R" first="Raffaele" last="Pugliese">Raffaele Pugliese</name>
<affiliation>
<nlm:affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maleki, Mahboubeh" sort="Maleki, Mahboubeh" uniqKey="Maleki M" first="Mahboubeh" last="Maleki">Mahboubeh Maleki</name>
<affiliation>
<nlm:affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gelain, Fabrizio" sort="Gelain, Fabrizio" uniqKey="Gelain F" first="Fabrizio" last="Gelain">Fabrizio Gelain</name>
<affiliation>
<nlm:affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy. gelain@mit.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology and bioengineering</title>
<idno type="e-ISSN">1097-0290</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A spinal cord injury (SCI) often causes permanent changes in strength and sensation functions below the site of the injury and affects thousands of people each year. Transplantation of stem cells is a promising approach in acute SCI as it may support spinal cord repair. However, in case of chronic SCI greater amounts of nervous tissue have to be regenerated, leaving scaffold transplantation the only feasible option for cellular engraftment and nervous bridging. The aim of regenerative medicine, specifically tissue engineering, is to create a microenvironment that mimics native extracellular matrix (ECM), capable of promoting specific cell-matrix interactions, coaxing cell behavior, and fostering host tissue regeneration. In this regard, nanostructured scaffolds are currently the most promising advanced substrates capable of supporting nervous fiber ingrowth and delivery of neurotrophic drugs. Among them, electrospinning technique and Self-Assembling Peptides (SAPs) have recently attracted lots of attention for their reproducible synthesis and high tailorability. This review highlights clinical trials and recent encouraging strategies for spinal cord repair comprising both cell therapy and nanomedicine. Biotechnol. Bioeng. 2016;113: 253-259. © 2015 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Data-Review">
<PMID Version="1">26134352</PMID>
<DateCreated>
<Year>2016</Year>
<Month>01</Month>
<Day>19</Day>
</DateCreated>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-0290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>113</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Biotechnology and bioengineering</Title>
<ISOAbbreviation>Biotechnol. Bioeng.</ISOAbbreviation>
</Journal>
<ArticleTitle>Recent therapeutic approaches for spinal cord injury.</ArticleTitle>
<Pagination>
<MedlinePgn>253-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/bit.25689</ELocationID>
<Abstract>
<AbstractText>A spinal cord injury (SCI) often causes permanent changes in strength and sensation functions below the site of the injury and affects thousands of people each year. Transplantation of stem cells is a promising approach in acute SCI as it may support spinal cord repair. However, in case of chronic SCI greater amounts of nervous tissue have to be regenerated, leaving scaffold transplantation the only feasible option for cellular engraftment and nervous bridging. The aim of regenerative medicine, specifically tissue engineering, is to create a microenvironment that mimics native extracellular matrix (ECM), capable of promoting specific cell-matrix interactions, coaxing cell behavior, and fostering host tissue regeneration. In this regard, nanostructured scaffolds are currently the most promising advanced substrates capable of supporting nervous fiber ingrowth and delivery of neurotrophic drugs. Among them, electrospinning technique and Self-Assembling Peptides (SAPs) have recently attracted lots of attention for their reproducible synthesis and high tailorability. This review highlights clinical trials and recent encouraging strategies for spinal cord repair comprising both cell therapy and nanomedicine. Biotechnol. Bioeng. 2016;113: 253-259. © 2015 Wiley Periodicals, Inc.</AbstractText>
<CopyrightInformation>© 2015 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Raspa</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietralcina, Viale Capuccini 1 San Giovanni Rotondo (FG) 71013, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pugliese</LastName>
<ForeName>Raffaele</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietralcina, Viale Capuccini 1 San Giovanni Rotondo (FG) 71013, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maleki</LastName>
<ForeName>Mahboubeh</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietralcina, Viale Capuccini 1 San Giovanni Rotondo (FG) 71013, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gelain</LastName>
<ForeName>Fabrizio</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Center for Nanomedicine and Tissue Engineering (CNTE), A. O. Ospedale Niguarda Cà Granda, Piazza dell' ospedale maggiore 3, 20162 Milan, Italy. gelain@mit.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>IRCCS Casa Sollievo della Sofferenza, Opera di San Pio da Pietralcina, Viale Capuccini 1 San Giovanni Rotondo (FG) 71013, Italy. gelain@mit.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>09</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Bioeng</MedlineTA>
<NlmUniqueID>7502021</NlmUniqueID>
<ISSNLinking>0006-3592</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">combined therapy</Keyword>
<Keyword MajorTopicYN="N">electrospun scaffolds</Keyword>
<Keyword MajorTopicYN="N">injectable SAPs</Keyword>
<Keyword MajorTopicYN="N">spinal cord injury</Keyword>
<Keyword MajorTopicYN="N">stem cells therapy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>4</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>6</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>6</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>9</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26134352</ArticleId>
<ArticleId IdType="doi">10.1002/bit.25689</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000070 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000070 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26134352
   |texte=   Recent therapeutic approaches for spinal cord injury.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26134352" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a OperaV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020