Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of pollution monitoring by expert systems.

Identifieur interne : 000724 ( PubMed/Checkpoint ); précédent : 000723; suivant : 000725

Analysis of pollution monitoring by expert systems.

Auteurs : G. De Marchi [Italie] ; B. Canepa ; F. Braggio ; G. Randi

Source :

RBID : pubmed:24233968

Abstract

Pollution monitoring can provide an important aid in the choice of the strategy to control the level of some dangerous elements, whether in water or in the air. The difficulties of detecting polluting sources from experimental data are related not only to the adoption of systematic and suitable measuring procedure, but also to a correct management of the available information. From the theoretical point of view, the use of simplified models, coupled with classical regularization techniques, shows that, in general, the problem is badly posed and consequently, numerically ill-conditioned. Hence the possibility of using expert systems algorithms, introducing further qualitative information, improves the reliability of the solutions. In particular, this paper deals with the utilization of fuzzy optimization algorithms: fuzzy theory supplies a formal reasoning technique, which proposes solutions that are real consequences of the premises.An actual example of such a method is described, making reference to the computation of the distribution of polluting sources from ground concentration data. The inverse problem is first solved using traditional procedures, showing that the distributed sources are not recognized. Afterwards, different results obtained from various algorithms derived from the assumed a-priori knowledge are examined. In this case, it is possible to obtain a more realistic situation of the pollution sources, inside the boundaries of the controlled area.

DOI: 10.1007/BF00401340
PubMed: 24233968


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24233968

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of pollution monitoring by expert systems.</title>
<author>
<name sortKey="De Marchi, G" sort="De Marchi, G" uniqKey="De Marchi G" first="G" last="De Marchi">G. De Marchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>ISTIC-Facoltà du Ingegneria, Università di Genova, Via Opera Pia, 15, 16145, Genova, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>ISTIC-Facoltà du Ingegneria, Università di Genova, Via Opera Pia, 15, 16145, Genova</wicri:regionArea>
<wicri:noRegion>Genova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Canepa, B" sort="Canepa, B" uniqKey="Canepa B" first="B" last="Canepa">B. Canepa</name>
</author>
<author>
<name sortKey="Braggio, F" sort="Braggio, F" uniqKey="Braggio F" first="F" last="Braggio">F. Braggio</name>
</author>
<author>
<name sortKey="Randi, G" sort="Randi, G" uniqKey="Randi G" first="G" last="Randi">G. Randi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1991">1991</date>
<idno type="doi">10.1007/BF00401340</idno>
<idno type="RBID">pubmed:24233968</idno>
<idno type="pmid">24233968</idno>
<idno type="wicri:Area/PubMed/Corpus">000764</idno>
<idno type="wicri:Area/PubMed/Curation">000764</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000724</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of pollution monitoring by expert systems.</title>
<author>
<name sortKey="De Marchi, G" sort="De Marchi, G" uniqKey="De Marchi G" first="G" last="De Marchi">G. De Marchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>ISTIC-Facoltà du Ingegneria, Università di Genova, Via Opera Pia, 15, 16145, Genova, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>ISTIC-Facoltà du Ingegneria, Università di Genova, Via Opera Pia, 15, 16145, Genova</wicri:regionArea>
<wicri:noRegion>Genova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Canepa, B" sort="Canepa, B" uniqKey="Canepa B" first="B" last="Canepa">B. Canepa</name>
</author>
<author>
<name sortKey="Braggio, F" sort="Braggio, F" uniqKey="Braggio F" first="F" last="Braggio">F. Braggio</name>
</author>
<author>
<name sortKey="Randi, G" sort="Randi, G" uniqKey="Randi G" first="G" last="Randi">G. Randi</name>
</author>
</analytic>
<series>
<title level="j">Environmental monitoring and assessment</title>
<idno type="ISSN">0167-6369</idno>
<imprint>
<date when="1991" type="published">1991</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Pollution monitoring can provide an important aid in the choice of the strategy to control the level of some dangerous elements, whether in water or in the air. The difficulties of detecting polluting sources from experimental data are related not only to the adoption of systematic and suitable measuring procedure, but also to a correct management of the available information. From the theoretical point of view, the use of simplified models, coupled with classical regularization techniques, shows that, in general, the problem is badly posed and consequently, numerically ill-conditioned. Hence the possibility of using expert systems algorithms, introducing further qualitative information, improves the reliability of the solutions. In particular, this paper deals with the utilization of fuzzy optimization algorithms: fuzzy theory supplies a formal reasoning technique, which proposes solutions that are real consequences of the premises.An actual example of such a method is described, making reference to the computation of the distribution of polluting sources from ground concentration data. The inverse problem is first solved using traditional procedures, showing that the distributed sources are not recognized. Afterwards, different results obtained from various algorithms derived from the assumed a-priori knowledge are examined. In this case, it is possible to obtain a more realistic situation of the pollution sources, inside the boundaries of the controlled area.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">24233968</PMID>
<DateCreated>
<Year>2013</Year>
<Month>11</Month>
<Day>15</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>18</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0167-6369</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>19</Volume>
<Issue>1-3</Issue>
<PubDate>
<Year>1991</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Environmental monitoring and assessment</Title>
<ISOAbbreviation>Environ Monit Assess</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of pollution monitoring by expert systems.</ArticleTitle>
<Pagination>
<MedlinePgn>539-47</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/BF00401340</ELocationID>
<Abstract>
<AbstractText>Pollution monitoring can provide an important aid in the choice of the strategy to control the level of some dangerous elements, whether in water or in the air. The difficulties of detecting polluting sources from experimental data are related not only to the adoption of systematic and suitable measuring procedure, but also to a correct management of the available information. From the theoretical point of view, the use of simplified models, coupled with classical regularization techniques, shows that, in general, the problem is badly posed and consequently, numerically ill-conditioned. Hence the possibility of using expert systems algorithms, introducing further qualitative information, improves the reliability of the solutions. In particular, this paper deals with the utilization of fuzzy optimization algorithms: fuzzy theory supplies a formal reasoning technique, which proposes solutions that are real consequences of the premises.An actual example of such a method is described, making reference to the computation of the distribution of polluting sources from ground concentration data. The inverse problem is first solved using traditional procedures, showing that the distributed sources are not recognized. Afterwards, different results obtained from various algorithms derived from the assumed a-priori knowledge are examined. In this case, it is possible to obtain a more realistic situation of the pollution sources, inside the boundaries of the controlled area.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>De Marchi</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>ISTIC-Facoltà du Ingegneria, Università di Genova, Via Opera Pia, 15, 16145, Genova, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Canepa</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Braggio</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Randi</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Environ Monit Assess</MedlineTA>
<NlmUniqueID>8508350</NlmUniqueID>
<ISSNLinking>0167-6369</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>1991</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1991</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/BF00401340</ArticleId>
<ArticleId IdType="pubmed">24233968</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Braggio, F" sort="Braggio, F" uniqKey="Braggio F" first="F" last="Braggio">F. Braggio</name>
<name sortKey="Canepa, B" sort="Canepa, B" uniqKey="Canepa B" first="B" last="Canepa">B. Canepa</name>
<name sortKey="Randi, G" sort="Randi, G" uniqKey="Randi G" first="G" last="Randi">G. Randi</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="De Marchi, G" sort="De Marchi, G" uniqKey="De Marchi G" first="G" last="De Marchi">G. De Marchi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000724 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000724 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:24233968
   |texte=   Analysis of pollution monitoring by expert systems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:24233968" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a OperaV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020