Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The price of neutrino superluminality continues to rise

Identifieur interne : 000457 ( PascalFrancis/Curation ); précédent : 000456; suivant : 000458

The price of neutrino superluminality continues to rise

Auteurs : Arthur Hebecker [Allemagne] ; Alexander Knochel [Allemagne]

Source :

RBID : Pascal:12-0350354

Descripteurs français

English descriptors

Abstract

We revisit the model building challenges that one faces when trying to reconcile the OPERA claim of neutrino superluminality with other observational constraints. The severity of the supernova bound and of the kinematical constraints of Cohen-Glashow type lead us to focus on scenarios where all types of particles are superluminal inside matter. In contrast to the Dvali-Vikman proposal, this matter effect needs to be very short-ranged to avoid constraints from experiments on the Earth's surface in low-density environments. Due to this short range, the interaction underlying such a matter effect would have to be far stronger than permitted by fifth-force bounds. As a conceivable way out we suggest to make the matter effect "binary", i.e., dense matter does not directly trigger superluminality, but merely induces the transition to a different phase of some weakly coupled hidden sector. This phase exhibits spontaneous Lorentz violation or at least a stronger than usual mediation of some residual Lorentz violation to all matter. The effect has not been observed before since we have never before been able to measure the velocity of high-energy particles in dense matter with sufficient precision.
pA  
A01 01  1    @0 0370-2693
A02 01      @0 PYLBAJ
A03   1    @0 Phys. lett., Sect. B
A05       @2 715
A06       @2 1-3
A08 01  1  ENG  @1 The price of neutrino superluminality continues to rise
A11 01  1    @1 HEBECKER (Arthur)
A11 02  1    @1 KNOCHEL (Alexander)
A14 01      @1 Institut für Theoretische Physik, Philosophenweg 19 @2 69120 Heidelberg @3 DEU @Z 1 aut. @Z 2 aut.
A20       @1 116-120
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 9425B @5 354000508120570150
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 48 ref.
A47 01  1    @0 12-0350354
A60       @1 P
A61       @0 A
A64 01  1    @0 Physics letters. Section B
A66 01      @0 GBR
C01 01    ENG  @0 We revisit the model building challenges that one faces when trying to reconcile the OPERA claim of neutrino superluminality with other observational constraints. The severity of the supernova bound and of the kinematical constraints of Cohen-Glashow type lead us to focus on scenarios where all types of particles are superluminal inside matter. In contrast to the Dvali-Vikman proposal, this matter effect needs to be very short-ranged to avoid constraints from experiments on the Earth's surface in low-density environments. Due to this short range, the interaction underlying such a matter effect would have to be far stronger than permitted by fifth-force bounds. As a conceivable way out we suggest to make the matter effect "binary", i.e., dense matter does not directly trigger superluminality, but merely induces the transition to a different phase of some weakly coupled hidden sector. This phase exhibits spontaneous Lorentz violation or at least a stronger than usual mediation of some residual Lorentz violation to all matter. The effect has not been observed before since we have never before been able to measure the velocity of high-energy particles in dense matter with sufficient precision.
C02 01  3    @0 001B00
C02 02  3    @0 001B20
C02 03  3    @0 001B10
C03 01  3  FRE  @0 Neutrino @5 26
C03 01  3  ENG  @0 Neutrinos @5 26
C03 02  X  FRE  @0 Modèle @5 27
C03 02  X  ENG  @0 Models @5 27
C03 02  X  SPA  @0 Modelo @5 27
C03 03  3  FRE  @0 Supernova @5 28
C03 03  3  ENG  @0 Supernovae @5 28
C03 04  3  FRE  @0 Interaction courte portée @5 29
C03 04  3  ENG  @0 Short-range interactions @5 29
C03 05  X  FRE  @0 Matière dense @5 30
C03 05  X  ENG  @0 Dense matter @5 30
C03 05  X  SPA  @0 Materia densa @5 30
C03 06  X  FRE  @0 Couplage faible @5 31
C03 06  X  ENG  @0 Weak coupling @5 31
C03 06  X  SPA  @0 Acoplamiento débil @5 31
C03 07  3  FRE  @0 Violation @5 32
C03 07  3  ENG  @0 Violations @5 32
C03 08  3  FRE  @0 Particule sans masse @5 33
C03 08  3  ENG  @0 Massless particles @5 33
C03 09  3  FRE  @0 Particule élémentaire @5 34
C03 09  3  ENG  @0 Elementary particles @5 34
N21       @1 268
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0350354

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The price of neutrino superluminality continues to rise</title>
<author>
<name sortKey="Hebecker, Arthur" sort="Hebecker, Arthur" uniqKey="Hebecker A" first="Arthur" last="Hebecker">Arthur Hebecker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut für Theoretische Physik, Philosophenweg 19</s1>
<s2>69120 Heidelberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Knochel, Alexander" sort="Knochel, Alexander" uniqKey="Knochel A" first="Alexander" last="Knochel">Alexander Knochel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut für Theoretische Physik, Philosophenweg 19</s1>
<s2>69120 Heidelberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0350354</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0350354 INIST</idno>
<idno type="RBID">Pascal:12-0350354</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000080</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000457</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The price of neutrino superluminality continues to rise</title>
<author>
<name sortKey="Hebecker, Arthur" sort="Hebecker, Arthur" uniqKey="Hebecker A" first="Arthur" last="Hebecker">Arthur Hebecker</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut für Theoretische Physik, Philosophenweg 19</s1>
<s2>69120 Heidelberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Knochel, Alexander" sort="Knochel, Alexander" uniqKey="Knochel A" first="Alexander" last="Knochel">Alexander Knochel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut für Theoretische Physik, Philosophenweg 19</s1>
<s2>69120 Heidelberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Physics letters. Section B</title>
<title level="j" type="abbreviated">Phys. lett., Sect. B</title>
<idno type="ISSN">0370-2693</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Physics letters. Section B</title>
<title level="j" type="abbreviated">Phys. lett., Sect. B</title>
<idno type="ISSN">0370-2693</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dense matter</term>
<term>Elementary particles</term>
<term>Massless particles</term>
<term>Models</term>
<term>Neutrinos</term>
<term>Short-range interactions</term>
<term>Supernovae</term>
<term>Violations</term>
<term>Weak coupling</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Neutrino</term>
<term>Modèle</term>
<term>Supernova</term>
<term>Interaction courte portée</term>
<term>Matière dense</term>
<term>Couplage faible</term>
<term>Violation</term>
<term>Particule sans masse</term>
<term>Particule élémentaire</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Particule élémentaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We revisit the model building challenges that one faces when trying to reconcile the OPERA claim of neutrino superluminality with other observational constraints. The severity of the supernova bound and of the kinematical constraints of Cohen-Glashow type lead us to focus on scenarios where all types of particles are superluminal inside matter. In contrast to the Dvali-Vikman proposal, this matter effect needs to be very short-ranged to avoid constraints from experiments on the Earth's surface in low-density environments. Due to this short range, the interaction underlying such a matter effect would have to be far stronger than permitted by fifth-force bounds. As a conceivable way out we suggest to make the matter effect "binary", i.e., dense matter does not directly trigger superluminality, but merely induces the transition to a different phase of some weakly coupled hidden sector. This phase exhibits spontaneous Lorentz violation or at least a stronger than usual mediation of some residual Lorentz violation to all matter. The effect has not been observed before since we have never before been able to measure the velocity of high-energy particles in dense matter with sufficient precision.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0370-2693</s0>
</fA01>
<fA02 i1="01">
<s0>PYLBAJ</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. lett., Sect. B</s0>
</fA03>
<fA05>
<s2>715</s2>
</fA05>
<fA06>
<s2>1-3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The price of neutrino superluminality continues to rise</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HEBECKER (Arthur)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KNOCHEL (Alexander)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut für Theoretische Physik, Philosophenweg 19</s1>
<s2>69120 Heidelberg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>116-120</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9425B</s2>
<s5>354000508120570150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>48 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0350354</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physics letters. Section B</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We revisit the model building challenges that one faces when trying to reconcile the OPERA claim of neutrino superluminality with other observational constraints. The severity of the supernova bound and of the kinematical constraints of Cohen-Glashow type lead us to focus on scenarios where all types of particles are superluminal inside matter. In contrast to the Dvali-Vikman proposal, this matter effect needs to be very short-ranged to avoid constraints from experiments on the Earth's surface in low-density environments. Due to this short range, the interaction underlying such a matter effect would have to be far stronger than permitted by fifth-force bounds. As a conceivable way out we suggest to make the matter effect "binary", i.e., dense matter does not directly trigger superluminality, but merely induces the transition to a different phase of some weakly coupled hidden sector. This phase exhibits spontaneous Lorentz violation or at least a stronger than usual mediation of some residual Lorentz violation to all matter. The effect has not been observed before since we have never before been able to measure the velocity of high-energy particles in dense matter with sufficient precision.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B20</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B10</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Neutrino</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Neutrinos</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Models</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Supernova</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Supernovae</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Interaction courte portée</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Short-range interactions</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Matière dense</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Dense matter</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Materia densa</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couplage faible</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Weak coupling</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Acoplamiento débil</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Violation</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Violations</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Particule sans masse</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Massless particles</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Particule élémentaire</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Elementary particles</s0>
<s5>34</s5>
</fC03>
<fN21>
<s1>268</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000457 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000457 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:12-0350354
   |texte=   The price of neutrino superluminality continues to rise
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020