Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Compensation of Beamlet Deflection by Mechanical Offset of Grid Apertures in the SPIDER Ion Source

Identifieur interne : 000371 ( PascalFrancis/Curation ); précédent : 000370; suivant : 000372

Compensation of Beamlet Deflection by Mechanical Offset of Grid Apertures in the SPIDER Ion Source

Auteurs : P. Agostinetti [Italie] ; V. Antoni [Italie] ; N. Pilan [Italie] ; G. Serianni [Italie]

Source :

RBID : Pascal:10-0459467

Descripteurs français

English descriptors

Abstract

The SPIDER experiment's main goal is to test the extraction of negative ions from an ITER-size ion source. It is designed to extract 1 280 negative ion beamlets and accelerate them up to a 100 kV potential. The negative ion beam at exit and the operating parameters will be carefully measured and optimized in order to match the ITER requirements for the Neutral Beam Injector (NBI) ion sources. Inside a negative ion accelerator, there are generally two main factors that can cause the deflection of the ion beamlets: the repulsion among beamlets and the electron suppression magnetic field. These two effects are both to be considered highly detrimental for the ITER NBI since they are expected to cause higher heat loads on the ITER NBI neutralizer and decrease the overall beam quality (in terms of aiming and divergence). Hence, they should also be considered and minimized for the SPIDER device, where it will be possible to precisely investigate the beamlet footprint using an instrumented calorimeter relatively close to the accelerator exit. This paper presents a design optimization process aiming at compensating the two described effects. To make this, a mechanical offset of the grounded grid apertures is considered. The OPERA-3-D code (Vector Fields Co. Ltd.) is used as the main tool for this optimization process because it can take into account beamlet repulsion and the interaction among the beamlets and grids. This is made by solving the electrostatic Poisson's equation with a finite element approach to calculate the particle trajectories of the negative ions under the influence of electrostatic fields, magnetic fields, and space charge.
pA  
A01 01  1    @0 0093-3813
A02 01      @0 ITPSBD
A03   1    @0 IEEE trans. plasma sci.
A05       @2 38
A06       @2 7
A08 01  1  ENG  @1 Compensation of Beamlet Deflection by Mechanical Offset of Grid Apertures in the SPIDER Ion Source
A11 01  1    @1 AGOSTINETTI (P.)
A11 02  1    @1 ANTONI (V.)
A11 03  1    @1 PILAN (N.)
A11 04  1    @1 SERIANNI (G.)
A14 01      @1 Consorzio RFX, Euratom-ENEA Association @2 35127 Padova @3 ITA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 1579-1583
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 222P @5 354000192693240070
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 17 ref.
A47 01  1    @0 10-0459467
A60       @1 P
A61       @0 A
A64 01  1    @0 IEEE transactions on plasma science
A66 01      @0 USA
C01 01    ENG  @0 The SPIDER experiment's main goal is to test the extraction of negative ions from an ITER-size ion source. It is designed to extract 1 280 negative ion beamlets and accelerate them up to a 100 kV potential. The negative ion beam at exit and the operating parameters will be carefully measured and optimized in order to match the ITER requirements for the Neutral Beam Injector (NBI) ion sources. Inside a negative ion accelerator, there are generally two main factors that can cause the deflection of the ion beamlets: the repulsion among beamlets and the electron suppression magnetic field. These two effects are both to be considered highly detrimental for the ITER NBI since they are expected to cause higher heat loads on the ITER NBI neutralizer and decrease the overall beam quality (in terms of aiming and divergence). Hence, they should also be considered and minimized for the SPIDER device, where it will be possible to precisely investigate the beamlet footprint using an instrumented calorimeter relatively close to the accelerator exit. This paper presents a design optimization process aiming at compensating the two described effects. To make this, a mechanical offset of the grounded grid apertures is considered. The OPERA-3-D code (Vector Fields Co. Ltd.) is used as the main tool for this optimization process because it can take into account beamlet repulsion and the interaction among the beamlets and grids. This is made by solving the electrostatic Poisson's equation with a finite element approach to calculate the particle trajectories of the negative ions under the influence of electrostatic fields, magnetic fields, and space charge.
C02 01  3    @0 001B50B55F
C03 01  3  FRE  @0 Confinement magnétique @5 03
C03 01  3  ENG  @0 Magnetic confinement @5 03
C03 02  X  FRE  @0 Plasma confiné @5 04
C03 02  X  ENG  @0 Confined plasma @5 04
C03 02  X  SPA  @0 Plasma confinado @5 04
C03 03  X  FRE  @0 Charge thermique @5 05
C03 03  X  ENG  @0 Thermal load @5 05
C03 03  X  SPA  @0 Carga térmica @5 05
C03 04  3  FRE  @0 Charge espace @5 06
C03 04  3  ENG  @0 Space charge @5 06
C03 05  3  FRE  @0 Source ion @5 11
C03 05  3  ENG  @0 Ion sources @5 11
C03 06  3  FRE  @0 Tokamak ITER @5 12
C03 06  3  ENG  @0 ITER tokamak @5 12
C03 07  X  FRE  @0 Injecteur @5 13
C03 07  X  ENG  @0 Injector @5 13
C03 07  X  SPA  @0 Inyector @5 13
C03 08  3  FRE  @0 Accélérateur ion @5 14
C03 08  3  ENG  @0 Ion accelerators @5 14
C03 09  3  FRE  @0 Conception @5 23
C03 09  3  ENG  @0 Design @5 23
C03 10  3  FRE  @0 Equation Poisson @5 24
C03 10  3  ENG  @0 Poisson equation @5 24
C03 11  3  FRE  @0 Etude théorique @5 25
C03 11  3  ENG  @0 Theoretical study @5 25
C03 12  3  FRE  @0 Etude expérimentale @5 30
C03 12  3  ENG  @0 Experimental study @5 30
C03 13  3  FRE  @0 Ion négatif @5 57
C03 13  3  ENG  @0 Negative ions @5 57
C03 14  3  FRE  @0 Faisceau ion @5 61
C03 14  3  ENG  @0 Ion beams @5 61
C03 15  X  FRE  @0 Faisceau particule neutre @5 62
C03 15  X  ENG  @0 Neutral beam @5 62
C03 15  X  SPA  @0 Haz partículas neutras @5 62
C03 16  3  FRE  @0 Optimisation @5 63
C03 16  3  ENG  @0 Optimization @5 63
C03 17  3  FRE  @0 5255F @4 INC @5 91
N21       @1 298
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0459467

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Compensation of Beamlet Deflection by Mechanical Offset of Grid Apertures in the SPIDER Ion Source</title>
<author>
<name sortKey="Agostinetti, P" sort="Agostinetti, P" uniqKey="Agostinetti P" first="P." last="Agostinetti">P. Agostinetti</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Consorzio RFX, Euratom-ENEA Association</s1>
<s2>35127 Padova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Antoni, V" sort="Antoni, V" uniqKey="Antoni V" first="V." last="Antoni">V. Antoni</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Consorzio RFX, Euratom-ENEA Association</s1>
<s2>35127 Padova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Pilan, N" sort="Pilan, N" uniqKey="Pilan N" first="N." last="Pilan">N. Pilan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Consorzio RFX, Euratom-ENEA Association</s1>
<s2>35127 Padova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Serianni, G" sort="Serianni, G" uniqKey="Serianni G" first="G." last="Serianni">G. Serianni</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Consorzio RFX, Euratom-ENEA Association</s1>
<s2>35127 Padova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0459467</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0459467 INIST</idno>
<idno type="RBID">Pascal:10-0459467</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000177</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000371</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Compensation of Beamlet Deflection by Mechanical Offset of Grid Apertures in the SPIDER Ion Source</title>
<author>
<name sortKey="Agostinetti, P" sort="Agostinetti, P" uniqKey="Agostinetti P" first="P." last="Agostinetti">P. Agostinetti</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Consorzio RFX, Euratom-ENEA Association</s1>
<s2>35127 Padova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Antoni, V" sort="Antoni, V" uniqKey="Antoni V" first="V." last="Antoni">V. Antoni</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Consorzio RFX, Euratom-ENEA Association</s1>
<s2>35127 Padova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Pilan, N" sort="Pilan, N" uniqKey="Pilan N" first="N." last="Pilan">N. Pilan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Consorzio RFX, Euratom-ENEA Association</s1>
<s2>35127 Padova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
<author>
<name sortKey="Serianni, G" sort="Serianni, G" uniqKey="Serianni G" first="G." last="Serianni">G. Serianni</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Consorzio RFX, Euratom-ENEA Association</s1>
<s2>35127 Padova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">IEEE transactions on plasma science</title>
<title level="j" type="abbreviated">IEEE trans. plasma sci.</title>
<idno type="ISSN">0093-3813</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">IEEE transactions on plasma science</title>
<title level="j" type="abbreviated">IEEE trans. plasma sci.</title>
<idno type="ISSN">0093-3813</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Confined plasma</term>
<term>Design</term>
<term>Experimental study</term>
<term>ITER tokamak</term>
<term>Injector</term>
<term>Ion accelerators</term>
<term>Ion beams</term>
<term>Ion sources</term>
<term>Magnetic confinement</term>
<term>Negative ions</term>
<term>Neutral beam</term>
<term>Optimization</term>
<term>Poisson equation</term>
<term>Space charge</term>
<term>Theoretical study</term>
<term>Thermal load</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Confinement magnétique</term>
<term>Plasma confiné</term>
<term>Charge thermique</term>
<term>Charge espace</term>
<term>Source ion</term>
<term>Tokamak ITER</term>
<term>Injecteur</term>
<term>Accélérateur ion</term>
<term>Conception</term>
<term>Equation Poisson</term>
<term>Etude théorique</term>
<term>Etude expérimentale</term>
<term>Ion négatif</term>
<term>Faisceau ion</term>
<term>Faisceau particule neutre</term>
<term>Optimisation</term>
<term>5255F</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The SPIDER experiment's main goal is to test the extraction of negative ions from an ITER-size ion source. It is designed to extract 1 280 negative ion beamlets and accelerate them up to a 100 kV potential. The negative ion beam at exit and the operating parameters will be carefully measured and optimized in order to match the ITER requirements for the Neutral Beam Injector (NBI) ion sources. Inside a negative ion accelerator, there are generally two main factors that can cause the deflection of the ion beamlets: the repulsion among beamlets and the electron suppression magnetic field. These two effects are both to be considered highly detrimental for the ITER NBI since they are expected to cause higher heat loads on the ITER NBI neutralizer and decrease the overall beam quality (in terms of aiming and divergence). Hence, they should also be considered and minimized for the SPIDER device, where it will be possible to precisely investigate the beamlet footprint using an instrumented calorimeter relatively close to the accelerator exit. This paper presents a design optimization process aiming at compensating the two described effects. To make this, a mechanical offset of the grounded grid apertures is considered. The OPERA-3-D code (Vector Fields Co. Ltd.) is used as the main tool for this optimization process because it can take into account beamlet repulsion and the interaction among the beamlets and grids. This is made by solving the electrostatic Poisson's equation with a finite element approach to calculate the particle trajectories of the negative ions under the influence of electrostatic fields, magnetic fields, and space charge.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0093-3813</s0>
</fA01>
<fA02 i1="01">
<s0>ITPSBD</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. plasma sci.</s0>
</fA03>
<fA05>
<s2>38</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Compensation of Beamlet Deflection by Mechanical Offset of Grid Apertures in the SPIDER Ion Source</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AGOSTINETTI (P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANTONI (V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PILAN (N.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SERIANNI (G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Consorzio RFX, Euratom-ENEA Association</s1>
<s2>35127 Padova</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1579-1583</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222P</s2>
<s5>354000192693240070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0459467</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE transactions on plasma science</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The SPIDER experiment's main goal is to test the extraction of negative ions from an ITER-size ion source. It is designed to extract 1 280 negative ion beamlets and accelerate them up to a 100 kV potential. The negative ion beam at exit and the operating parameters will be carefully measured and optimized in order to match the ITER requirements for the Neutral Beam Injector (NBI) ion sources. Inside a negative ion accelerator, there are generally two main factors that can cause the deflection of the ion beamlets: the repulsion among beamlets and the electron suppression magnetic field. These two effects are both to be considered highly detrimental for the ITER NBI since they are expected to cause higher heat loads on the ITER NBI neutralizer and decrease the overall beam quality (in terms of aiming and divergence). Hence, they should also be considered and minimized for the SPIDER device, where it will be possible to precisely investigate the beamlet footprint using an instrumented calorimeter relatively close to the accelerator exit. This paper presents a design optimization process aiming at compensating the two described effects. To make this, a mechanical offset of the grounded grid apertures is considered. The OPERA-3-D code (Vector Fields Co. Ltd.) is used as the main tool for this optimization process because it can take into account beamlet repulsion and the interaction among the beamlets and grids. This is made by solving the electrostatic Poisson's equation with a finite element approach to calculate the particle trajectories of the negative ions under the influence of electrostatic fields, magnetic fields, and space charge.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B50B55F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Confinement magnétique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Magnetic confinement</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Plasma confiné</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Confined plasma</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Plasma confinado</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Charge thermique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Thermal load</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Carga térmica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Charge espace</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Space charge</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Source ion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Ion sources</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Tokamak ITER</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>ITER tokamak</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Injecteur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Injector</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Inyector</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Accélérateur ion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Ion accelerators</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Conception</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Design</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Equation Poisson</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Poisson equation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>30</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Ion négatif</s0>
<s5>57</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Negative ions</s0>
<s5>57</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Faisceau ion</s0>
<s5>61</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Ion beams</s0>
<s5>61</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Faisceau particule neutre</s0>
<s5>62</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Neutral beam</s0>
<s5>62</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Haz partículas neutras</s0>
<s5>62</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Optimisation</s0>
<s5>63</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Optimization</s0>
<s5>63</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>5255F</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>298</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000371 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000371 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:10-0459467
   |texte=   Compensation of Beamlet Deflection by Mechanical Offset of Grid Apertures in the SPIDER Ion Source
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020