Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic Analysis of Oil Yield, Seed Yield, and Yield Components in Rapeseed Using Additive Main Effects and Multiplicative Interaction Biplots

Identifieur interne : 000370 ( PascalFrancis/Curation ); précédent : 000369; suivant : 000371

Genetic Analysis of Oil Yield, Seed Yield, and Yield Components in Rapeseed Using Additive Main Effects and Multiplicative Interaction Biplots

Auteurs : N. Sabaghnia [Iran] ; H. Dehghani [Iran] ; B. Alizadeh [Iran] ; M. Mohghaddam [Iran]

Source :

RBID : Pascal:10-0455791

Descripteurs français

English descriptors

Abstract

Rapeseed (Brassica napus L.) is regarded as one of the most important oilseed crops worldwide. An experiment was conducted to quantitatively examine the genetic parameters of oil yield, seed yield, and yield components for rapeseed by using a half diallel of nine rapeseed cultivars. The 36 F1 hybrids, their parents, and four other commercial varieties were planted in breeding nurseries in 2008 and 2009. During the growing season, the number of pods per plant (NPP), number of seeds per pod (NSP), pod length (PL), 1000 seed weight (SW), harvest index (HI), seed yield (SY), oil percent (OP), and oil yield (OY) were measured. The data were analyzed with the additive main effects and multiplicative interaction (AMMI) model and its biplots. The first two principal components (IPC1 and IPC2) were used to create a two-dimensional biplot. IPC1 accounted for 28.7% (SW in 2008) to 48.9% (OP in 2009) of the sum of squares of the male by female (M x F) interaction, while IPC2 accounted for 18.3% (PL in 2009) to 31.6% (number of seeds per pod in 2008) of the sum of squares of the M x F interaction. Two heterotic groups were identified for OY, and six between-group crosses, that is, [Talaye, Modena, Opera] x [Fornax, Orient], would provide maximum heterosis for this trait. The AMMI analysis with the half diallel method identified not only the general combining ability (GCA) and specific combining ability (SCA) effects but also the F1 crosses whose offspring may display heterosis in their offspring. The results can be used to design efficient breeding strategies in rapeseed.
pA  
A01 01  1    @0 0002-1962
A02 01      @0 AGJOAT
A03   1    @0 Agron. j. : (Print)
A05       @2 102
A06       @2 5
A08 01  1  ENG  @1 Genetic Analysis of Oil Yield, Seed Yield, and Yield Components in Rapeseed Using Additive Main Effects and Multiplicative Interaction Biplots
A11 01  1    @1 SABAGHNIA (N.)
A11 02  1    @1 DEHGHANI (H.)
A11 03  1    @1 ALIZADEH (B.)
A11 04  1    @1 MOHGHADDAM (M.)
A14 01      @1 Tarbiat Modares University @2 Tehran @3 IRN @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A20       @1 1361-1368
A21       @1 2010
A23 01      @0 ENG
A43 01      @1 INIST @2 553 @5 354000192673510050
A44       @0 0000 @1 © 2010 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 10-0455791
A60       @1 P
A61       @0 A
A64 01  1    @0 Agronomy journal : (Print)
A66 01      @0 USA
C01 01    ENG  @0 Rapeseed (Brassica napus L.) is regarded as one of the most important oilseed crops worldwide. An experiment was conducted to quantitatively examine the genetic parameters of oil yield, seed yield, and yield components for rapeseed by using a half diallel of nine rapeseed cultivars. The 36 F1 hybrids, their parents, and four other commercial varieties were planted in breeding nurseries in 2008 and 2009. During the growing season, the number of pods per plant (NPP), number of seeds per pod (NSP), pod length (PL), 1000 seed weight (SW), harvest index (HI), seed yield (SY), oil percent (OP), and oil yield (OY) were measured. The data were analyzed with the additive main effects and multiplicative interaction (AMMI) model and its biplots. The first two principal components (IPC1 and IPC2) were used to create a two-dimensional biplot. IPC1 accounted for 28.7% (SW in 2008) to 48.9% (OP in 2009) of the sum of squares of the male by female (M x F) interaction, while IPC2 accounted for 18.3% (PL in 2009) to 31.6% (number of seeds per pod in 2008) of the sum of squares of the M x F interaction. Two heterotic groups were identified for OY, and six between-group crosses, that is, [Talaye, Modena, Opera] x [Fornax, Orient], would provide maximum heterosis for this trait. The AMMI analysis with the half diallel method identified not only the general combining ability (GCA) and specific combining ability (SCA) effects but also the F1 crosses whose offspring may display heterosis in their offspring. The results can be used to design efficient breeding strategies in rapeseed.
C02 01  X    @0 002A32D
C02 02  X    @0 002A07C
C03 01  X  FRE  @0 Déterminisme génétique @5 01
C03 01  X  ENG  @0 Genetic determinism @5 01
C03 01  X  SPA  @0 Determinismo genético @5 01
C03 02  X  FRE  @0 Graine oléagineuse @5 02
C03 02  X  ENG  @0 Oilseed @5 02
C03 02  X  SPA  @0 Semilla oleaginosa @5 02
C03 03  X  FRE  @0 Rendement semence @5 03
C03 03  X  ENG  @0 Seed yield @5 03
C03 03  X  SPA  @0 Rendimiento en semilla @5 03
C03 04  X  FRE  @0 Composante rendement @5 04
C03 04  X  ENG  @0 Yield component @5 04
C03 04  X  SPA  @0 Componente rendimiento @5 04
C03 05  X  FRE  @0 Graine colza @5 05
C03 05  X  ENG  @0 Rapeseed @5 05
C03 05  X  SPA  @0 Semilla colza @5 05
C03 06  X  FRE  @0 Utilisation @5 06
C03 06  X  ENG  @0 Use @5 06
C03 06  X  SPA  @0 Uso @5 06
C03 07  X  FRE  @0 Agronomie @5 07
C03 07  X  ENG  @0 Agronomy @5 07
C03 07  X  SPA  @0 Agronomía @5 07
C03 08  X  FRE  @0 Génétique quantitative @5 08
C03 08  X  ENG  @0 Quantitative genetics @5 08
C03 08  X  SPA  @0 Genética cuantitativa @5 08
C03 09  X  FRE  @0 Mathématiques appliquées @5 09
C03 09  X  ENG  @0 Applied mathematics @5 09
C03 09  X  SPA  @0 Matemáticas aplicadas @5 09
C03 10  X  FRE  @0 Brassica napus var. oleifera @2 NS @5 10
C03 10  X  ENG  @0 Brassica napus var. oleifera @2 NS @5 10
C03 10  X  SPA  @0 Brassica napus var. oleifera @2 NS @5 10
C03 11  X  FRE  @0 Plante en C3 @4 INC @5 68
C03 12  X  FRE  @0 Méthode AMMI @4 CD @5 96
C03 12  X  ENG  @0 AMMI method @4 CD @5 96
C03 12  X  SPA  @0 Método AMMI @4 CD @5 96
C07 01  X  FRE  @0 Cruciferae @2 NS
C07 01  X  ENG  @0 Cruciferae @2 NS
C07 01  X  SPA  @0 Cruciferae @2 NS
C07 02  X  FRE  @0 Dicotyledones @2 NS
C07 02  X  ENG  @0 Dicotyledones @2 NS
C07 02  X  SPA  @0 Dicotyledones @2 NS
C07 03  X  FRE  @0 Angiospermae @2 NS
C07 03  X  ENG  @0 Angiospermae @2 NS
C07 03  X  SPA  @0 Angiospermae @2 NS
C07 04  X  FRE  @0 Spermatophyta @2 NS
C07 04  X  ENG  @0 Spermatophyta @2 NS
C07 04  X  SPA  @0 Spermatophyta @2 NS
C07 05  X  FRE  @0 Plante oléagineuse @5 31
C07 05  X  ENG  @0 Oil plant (vegetal) @5 31
C07 05  X  SPA  @0 Planta oleaginosa @5 31
C07 06  X  FRE  @0 Type C3 @5 32
C07 06  X  ENG  @0 C3-Type @5 32
C07 06  X  SPA  @0 Tipo C3 @5 32
C07 07  X  FRE  @0 Méthode statistique @5 33
C07 07  X  ENG  @0 Statistical method @5 33
C07 07  X  SPA  @0 Método estadístico @5 33
C07 08  X  FRE  @0 Végétal @5 39
C07 08  X  ENG  @0 Vegetals @5 39
C07 08  X  SPA  @0 Vegetal @5 39
N21       @1 298
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0455791

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Genetic Analysis of Oil Yield, Seed Yield, and Yield Components in Rapeseed Using Additive Main Effects and Multiplicative Interaction Biplots</title>
<author>
<name sortKey="Sabaghnia, N" sort="Sabaghnia, N" uniqKey="Sabaghnia N" first="N." last="Sabaghnia">N. Sabaghnia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tarbiat Modares University</s1>
<s2>Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
<author>
<name sortKey="Dehghani, H" sort="Dehghani, H" uniqKey="Dehghani H" first="H." last="Dehghani">H. Dehghani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tarbiat Modares University</s1>
<s2>Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
<author>
<name sortKey="Alizadeh, B" sort="Alizadeh, B" uniqKey="Alizadeh B" first="B." last="Alizadeh">B. Alizadeh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tarbiat Modares University</s1>
<s2>Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
<author>
<name sortKey="Mohghaddam, M" sort="Mohghaddam, M" uniqKey="Mohghaddam M" first="M." last="Mohghaddam">M. Mohghaddam</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tarbiat Modares University</s1>
<s2>Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0455791</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0455791 INIST</idno>
<idno type="RBID">Pascal:10-0455791</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000178</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000370</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Genetic Analysis of Oil Yield, Seed Yield, and Yield Components in Rapeseed Using Additive Main Effects and Multiplicative Interaction Biplots</title>
<author>
<name sortKey="Sabaghnia, N" sort="Sabaghnia, N" uniqKey="Sabaghnia N" first="N." last="Sabaghnia">N. Sabaghnia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tarbiat Modares University</s1>
<s2>Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
<author>
<name sortKey="Dehghani, H" sort="Dehghani, H" uniqKey="Dehghani H" first="H." last="Dehghani">H. Dehghani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tarbiat Modares University</s1>
<s2>Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
<author>
<name sortKey="Alizadeh, B" sort="Alizadeh, B" uniqKey="Alizadeh B" first="B." last="Alizadeh">B. Alizadeh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tarbiat Modares University</s1>
<s2>Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
<author>
<name sortKey="Mohghaddam, M" sort="Mohghaddam, M" uniqKey="Mohghaddam M" first="M." last="Mohghaddam">M. Mohghaddam</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Tarbiat Modares University</s1>
<s2>Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Iran</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Agronomy journal : (Print)</title>
<title level="j" type="abbreviated">Agron. j. : (Print)</title>
<idno type="ISSN">0002-1962</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Agronomy journal : (Print)</title>
<title level="j" type="abbreviated">Agron. j. : (Print)</title>
<idno type="ISSN">0002-1962</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AMMI method</term>
<term>Agronomy</term>
<term>Applied mathematics</term>
<term>Brassica napus var. oleifera</term>
<term>Genetic determinism</term>
<term>Oilseed</term>
<term>Quantitative genetics</term>
<term>Rapeseed</term>
<term>Seed yield</term>
<term>Use</term>
<term>Yield component</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Déterminisme génétique</term>
<term>Graine oléagineuse</term>
<term>Rendement semence</term>
<term>Composante rendement</term>
<term>Graine colza</term>
<term>Utilisation</term>
<term>Agronomie</term>
<term>Génétique quantitative</term>
<term>Mathématiques appliquées</term>
<term>Brassica napus var. oleifera</term>
<term>Plante en C3</term>
<term>Méthode AMMI</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Agronomie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rapeseed (Brassica napus L.) is regarded as one of the most important oilseed crops worldwide. An experiment was conducted to quantitatively examine the genetic parameters of oil yield, seed yield, and yield components for rapeseed by using a half diallel of nine rapeseed cultivars. The 36 F1 hybrids, their parents, and four other commercial varieties were planted in breeding nurseries in 2008 and 2009. During the growing season, the number of pods per plant (NPP), number of seeds per pod (NSP), pod length (PL), 1000 seed weight (SW), harvest index (HI), seed yield (SY), oil percent (OP), and oil yield (OY) were measured. The data were analyzed with the additive main effects and multiplicative interaction (AMMI) model and its biplots. The first two principal components (IPC1 and IPC2) were used to create a two-dimensional biplot. IPC1 accounted for 28.7% (SW in 2008) to 48.9% (OP in 2009) of the sum of squares of the male by female (M x F) interaction, while IPC2 accounted for 18.3% (PL in 2009) to 31.6% (number of seeds per pod in 2008) of the sum of squares of the M x F interaction. Two heterotic groups were identified for OY, and six between-group crosses, that is, [Talaye, Modena, Opera] x [Fornax, Orient], would provide maximum heterosis for this trait. The AMMI analysis with the half diallel method identified not only the general combining ability (GCA) and specific combining ability (SCA) effects but also the F1 crosses whose offspring may display heterosis in their offspring. The results can be used to design efficient breeding strategies in rapeseed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0002-1962</s0>
</fA01>
<fA02 i1="01">
<s0>AGJOAT</s0>
</fA02>
<fA03 i2="1">
<s0>Agron. j. : (Print)</s0>
</fA03>
<fA05>
<s2>102</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Genetic Analysis of Oil Yield, Seed Yield, and Yield Components in Rapeseed Using Additive Main Effects and Multiplicative Interaction Biplots</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SABAGHNIA (N.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DEHGHANI (H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ALIZADEH (B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MOHGHADDAM (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Tarbiat Modares University</s1>
<s2>Tehran</s2>
<s3>IRN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1361-1368</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>553</s2>
<s5>354000192673510050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0455791</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Agronomy journal : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Rapeseed (Brassica napus L.) is regarded as one of the most important oilseed crops worldwide. An experiment was conducted to quantitatively examine the genetic parameters of oil yield, seed yield, and yield components for rapeseed by using a half diallel of nine rapeseed cultivars. The 36 F1 hybrids, their parents, and four other commercial varieties were planted in breeding nurseries in 2008 and 2009. During the growing season, the number of pods per plant (NPP), number of seeds per pod (NSP), pod length (PL), 1000 seed weight (SW), harvest index (HI), seed yield (SY), oil percent (OP), and oil yield (OY) were measured. The data were analyzed with the additive main effects and multiplicative interaction (AMMI) model and its biplots. The first two principal components (IPC1 and IPC2) were used to create a two-dimensional biplot. IPC1 accounted for 28.7% (SW in 2008) to 48.9% (OP in 2009) of the sum of squares of the male by female (M x F) interaction, while IPC2 accounted for 18.3% (PL in 2009) to 31.6% (number of seeds per pod in 2008) of the sum of squares of the M x F interaction. Two heterotic groups were identified for OY, and six between-group crosses, that is, [Talaye, Modena, Opera] x [Fornax, Orient], would provide maximum heterosis for this trait. The AMMI analysis with the half diallel method identified not only the general combining ability (GCA) and specific combining ability (SCA) effects but also the F1 crosses whose offspring may display heterosis in their offspring. The results can be used to design efficient breeding strategies in rapeseed.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A32D</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A07C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Déterminisme génétique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Genetic determinism</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Determinismo genético</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Graine oléagineuse</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Oilseed</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Semilla oleaginosa</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Rendement semence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Seed yield</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Rendimiento en semilla</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composante rendement</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Yield component</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Componente rendimiento</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Graine colza</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Rapeseed</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Semilla colza</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Utilisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Use</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Uso</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Agronomie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Agronomy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Agronomía</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Génétique quantitative</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Quantitative genetics</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Genética cuantitativa</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Mathématiques appliquées</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Applied mathematics</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Matemáticas aplicadas</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Brassica napus var. oleifera</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Brassica napus var. oleifera</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Brassica napus var. oleifera</s0>
<s2>NS</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Plante en C3</s0>
<s4>INC</s4>
<s5>68</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Méthode AMMI</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>AMMI method</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Método AMMI</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Cruciferae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Cruciferae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Cruciferae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dicotyledones</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Angiospermae</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Spermatophyta</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Plante oléagineuse</s0>
<s5>31</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Oil plant (vegetal)</s0>
<s5>31</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Planta oleaginosa</s0>
<s5>31</s5>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Type C3</s0>
<s5>32</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>C3-Type</s0>
<s5>32</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Tipo C3</s0>
<s5>32</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Méthode statistique</s0>
<s5>33</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Statistical method</s0>
<s5>33</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Método estadístico</s0>
<s5>33</s5>
</fC07>
<fC07 i1="08" i2="X" l="FRE">
<s0>Végétal</s0>
<s5>39</s5>
</fC07>
<fC07 i1="08" i2="X" l="ENG">
<s0>Vegetals</s0>
<s5>39</s5>
</fC07>
<fC07 i1="08" i2="X" l="SPA">
<s0>Vegetal</s0>
<s5>39</s5>
</fC07>
<fN21>
<s1>298</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000370 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000370 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:10-0455791
   |texte=   Genetic Analysis of Oil Yield, Seed Yield, and Yield Components in Rapeseed Using Additive Main Effects and Multiplicative Interaction Biplots
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020