Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stochastic analysis of interconnect performance in the presence of process variations

Identifieur interne : 000375 ( PascalFrancis/Corpus ); précédent : 000374; suivant : 000376

Stochastic analysis of interconnect performance in the presence of process variations

Auteurs : Janet Wang ; Praveen Ghanta ; Sarma Vrudhula

Source :

RBID : Pascal:06-0156613

Descripteurs français

English descriptors

Abstract

Deformations in interconnect due to process variations can lead to significant performance degradation in deep sub-micron circuits. Timing analyzers attempt to capture the effects of variation on delay with simplified models. The timing verification of RC or RLC networks requires the substitution of such simplified models with spatial stochastic processes that capture the random nature of process variations. The present work proposes a new and viable method to compute the stochastic response of interconnects. The technique models the stochastic response in an infinite dimensional Hilbert space in terms of orthogonal polynomial expansions. A finite representation is obtained by using the Galerkin approach of minimizing the Hilbert space norm of the residual error. The key advance of the proposed method is that it provides a functional representation of the response of the system in terms of the random variables that represent the process variations. The proposed algorithm has been implemented in a procedure called OPERA. Results from OPERA simulations on commercial design test cases match well with those from the classical Monte Carlo SPICE simulations and from perturbation methods. Additionally OPERA shows good computational efficiency: speedup factor of 60 has been observed over Monte Carlo SPICE simulations.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A08 01  1  ENG  @1 Stochastic analysis of interconnect performance in the presence of process variations
A09 01  1  ENG  @1 ICCAD-2004 : International Conference on Computer Aided Design : November 7-11, 2004, DoubleTree Hotel, San Jose, CA
A11 01  1    @1 WANG (Janet)
A11 02  1    @1 GHANTA (Praveen)
A11 03  1    @1 VRUDHULA (Sarma)
A14 01      @1 ECE Dept., Univ. of Arizona @2 Tucson, Arizona @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A18 01  1    @1 IEEE Circuits and Systems Society @3 USA @9 org-cong.
A20       @2 vol2, 880-886
A21       @1 2004
A23 01      @0 ENG
A25 01      @1 IEEE @2 Piscataway, N.J.
A25 02      @1 ACM @2 New-York, N.Y.
A26 01      @0 0-7803-8702-3
A30 01  1  ENG  @1 IEEE/ACM International Conference on Computer-Aided Design @3 San Jose CA USA @4 2004-11-07
A43 01      @1 INIST @2 Y 38705 @5 354000138704991270
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 28 ref.
A47 01  1    @0 06-0156613
A60       @1 C
A61       @0 A
A66 01      @0 USA
C01 01    ENG  @0 Deformations in interconnect due to process variations can lead to significant performance degradation in deep sub-micron circuits. Timing analyzers attempt to capture the effects of variation on delay with simplified models. The timing verification of RC or RLC networks requires the substitution of such simplified models with spatial stochastic processes that capture the random nature of process variations. The present work proposes a new and viable method to compute the stochastic response of interconnects. The technique models the stochastic response in an infinite dimensional Hilbert space in terms of orthogonal polynomial expansions. A finite representation is obtained by using the Galerkin approach of minimizing the Hilbert space norm of the residual error. The key advance of the proposed method is that it provides a functional representation of the response of the system in terms of the random variables that represent the process variations. The proposed algorithm has been implemented in a procedure called OPERA. Results from OPERA simulations on commercial design test cases match well with those from the classical Monte Carlo SPICE simulations and from perturbation methods. Additionally OPERA shows good computational efficiency: speedup factor of 60 has been observed over Monte Carlo SPICE simulations.
C02 01  X    @0 001D02B11
C02 02  X    @0 001D03F06B
C03 01  X  FRE  @0 Conception assistée @5 01
C03 01  X  ENG  @0 Computer aided design @5 01
C03 01  X  SPA  @0 Concepción asistida @5 01
C03 02  X  FRE  @0 Conception circuit @5 02
C03 02  X  ENG  @0 Circuit design @5 02
C03 02  X  SPA  @0 Diseño circuito @5 02
C03 03  X  FRE  @0 Processus stochastique @5 06
C03 03  X  ENG  @0 Stochastic process @5 06
C03 03  X  SPA  @0 Proceso estocástico @5 06
C03 04  X  FRE  @0 Analyse stochastique @5 18
C03 04  X  ENG  @0 Stochastic analysis @5 18
C03 04  X  SPA  @0 Análisis estocástico @5 18
C03 05  X  FRE  @0 Evaluation performance @5 19
C03 05  X  ENG  @0 Performance evaluation @5 19
C03 05  X  SPA  @0 Evaluación prestación @5 19
C03 06  X  FRE  @0 Système temporisé @5 20
C03 06  X  ENG  @0 Timed system @5 20
C03 06  X  SPA  @0 Sistema temporizado @5 20
C03 07  X  FRE  @0 Effet retard @5 21
C03 07  X  ENG  @0 Delay effect @5 21
C03 07  X  SPA  @0 Efecto retardo @5 21
C03 08  X  FRE  @0 Appel procédure @5 22
C03 08  X  ENG  @0 Procedure call @5 22
C03 08  X  SPA  @0 Llamada procedimiento @5 22
C03 09  X  FRE  @0 Analyse statistique @5 23
C03 09  X  ENG  @0 Statistical analysis @5 23
C03 09  X  SPA  @0 Análisis estadístico @5 23
C03 10  X  FRE  @0 Modélisation @5 24
C03 10  X  ENG  @0 Modeling @5 24
C03 10  X  SPA  @0 Modelización @5 24
C03 11  X  FRE  @0 Méthode stochastique @5 25
C03 11  X  ENG  @0 Stochastic method @5 25
C03 11  X  SPA  @0 Método estocástico @5 25
C03 12  X  FRE  @0 Approche probabiliste @5 26
C03 12  X  ENG  @0 Probabilistic approach @5 26
C03 12  X  SPA  @0 Enfoque probabilista @5 26
C03 13  X  FRE  @0 Espace Hilbert @5 27
C03 13  X  ENG  @0 Hilbert space @5 27
C03 13  X  SPA  @0 Espacio Hilbert @5 27
C03 14  X  FRE  @0 Polynôme orthogonal @5 28
C03 14  X  ENG  @0 Orthogonal polynomial @5 28
C03 14  X  SPA  @0 Polinomio ortogonal @5 28
C03 15  X  FRE  @0 Méthode Galerkin @5 29
C03 15  X  ENG  @0 Galerkin method @5 29
C03 15  X  SPA  @0 Método Galerkin @5 29
C03 16  X  FRE  @0 Variable aléatoire @5 30
C03 16  X  ENG  @0 Random variable @5 30
C03 16  X  SPA  @0 Variable aléatoria @5 30
C03 17  X  FRE  @0 Méthode Monte Carlo @5 31
C03 17  X  ENG  @0 Monte Carlo method @5 31
C03 17  X  SPA  @0 Método Monte Carlo @5 31
C03 18  X  FRE  @0 Méthode perturbation @5 32
C03 18  X  ENG  @0 Perturbation method @5 32
C03 18  X  SPA  @0 Método perturbación @5 32
N21       @1 093
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0156613 INIST
ET : Stochastic analysis of interconnect performance in the presence of process variations
AU : WANG (Janet); GHANTA (Praveen); VRUDHULA (Sarma)
AF : ECE Dept., Univ. of Arizona/Tucson, Arizona/Etats-Unis (1 aut., 2 aut., 3 aut.)
DT : Congrès; Niveau analytique
SO : IEEE/ACM International Conference on Computer-Aided Design/2004-11-07/San Jose CA USA; Etats-Unis; Piscataway, N.J., New-York, N.Y.: IEEE; Da. 2004; vol2, 880-886; ISBN 0-7803-8702-3
LA : Anglais
EA : Deformations in interconnect due to process variations can lead to significant performance degradation in deep sub-micron circuits. Timing analyzers attempt to capture the effects of variation on delay with simplified models. The timing verification of RC or RLC networks requires the substitution of such simplified models with spatial stochastic processes that capture the random nature of process variations. The present work proposes a new and viable method to compute the stochastic response of interconnects. The technique models the stochastic response in an infinite dimensional Hilbert space in terms of orthogonal polynomial expansions. A finite representation is obtained by using the Galerkin approach of minimizing the Hilbert space norm of the residual error. The key advance of the proposed method is that it provides a functional representation of the response of the system in terms of the random variables that represent the process variations. The proposed algorithm has been implemented in a procedure called OPERA. Results from OPERA simulations on commercial design test cases match well with those from the classical Monte Carlo SPICE simulations and from perturbation methods. Additionally OPERA shows good computational efficiency: speedup factor of 60 has been observed over Monte Carlo SPICE simulations.
CC : 001D02B11; 001D03F06B
FD : Conception assistée; Conception circuit; Processus stochastique; Analyse stochastique; Evaluation performance; Système temporisé; Effet retard; Appel procédure; Analyse statistique; Modélisation; Méthode stochastique; Approche probabiliste; Espace Hilbert; Polynôme orthogonal; Méthode Galerkin; Variable aléatoire; Méthode Monte Carlo; Méthode perturbation
ED : Computer aided design; Circuit design; Stochastic process; Stochastic analysis; Performance evaluation; Timed system; Delay effect; Procedure call; Statistical analysis; Modeling; Stochastic method; Probabilistic approach; Hilbert space; Orthogonal polynomial; Galerkin method; Random variable; Monte Carlo method; Perturbation method
SD : Concepción asistida; Diseño circuito; Proceso estocástico; Análisis estocástico; Evaluación prestación; Sistema temporizado; Efecto retardo; Llamada procedimiento; Análisis estadístico; Modelización; Método estocástico; Enfoque probabilista; Espacio Hilbert; Polinomio ortogonal; Método Galerkin; Variable aléatoria; Método Monte Carlo; Método perturbación
LO : INIST-Y 38705.354000138704991270
ID : 06-0156613

Links to Exploration step

Pascal:06-0156613

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Stochastic analysis of interconnect performance in the presence of process variations</title>
<author>
<name sortKey="Wang, Janet" sort="Wang, Janet" uniqKey="Wang J" first="Janet" last="Wang">Janet Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ghanta, Praveen" sort="Ghanta, Praveen" uniqKey="Ghanta P" first="Praveen" last="Ghanta">Praveen Ghanta</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vrudhula, Sarma" sort="Vrudhula, Sarma" uniqKey="Vrudhula S" first="Sarma" last="Vrudhula">Sarma Vrudhula</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0156613</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 06-0156613 INIST</idno>
<idno type="RBID">Pascal:06-0156613</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000375</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Stochastic analysis of interconnect performance in the presence of process variations</title>
<author>
<name sortKey="Wang, Janet" sort="Wang, Janet" uniqKey="Wang J" first="Janet" last="Wang">Janet Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ghanta, Praveen" sort="Ghanta, Praveen" uniqKey="Ghanta P" first="Praveen" last="Ghanta">Praveen Ghanta</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Vrudhula, Sarma" sort="Vrudhula, Sarma" uniqKey="Vrudhula S" first="Sarma" last="Vrudhula">Sarma Vrudhula</name>
<affiliation>
<inist:fA14 i1="01">
<s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Circuit design</term>
<term>Computer aided design</term>
<term>Delay effect</term>
<term>Galerkin method</term>
<term>Hilbert space</term>
<term>Modeling</term>
<term>Monte Carlo method</term>
<term>Orthogonal polynomial</term>
<term>Performance evaluation</term>
<term>Perturbation method</term>
<term>Probabilistic approach</term>
<term>Procedure call</term>
<term>Random variable</term>
<term>Statistical analysis</term>
<term>Stochastic analysis</term>
<term>Stochastic method</term>
<term>Stochastic process</term>
<term>Timed system</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conception assistée</term>
<term>Conception circuit</term>
<term>Processus stochastique</term>
<term>Analyse stochastique</term>
<term>Evaluation performance</term>
<term>Système temporisé</term>
<term>Effet retard</term>
<term>Appel procédure</term>
<term>Analyse statistique</term>
<term>Modélisation</term>
<term>Méthode stochastique</term>
<term>Approche probabiliste</term>
<term>Espace Hilbert</term>
<term>Polynôme orthogonal</term>
<term>Méthode Galerkin</term>
<term>Variable aléatoire</term>
<term>Méthode Monte Carlo</term>
<term>Méthode perturbation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Deformations in interconnect due to process variations can lead to significant performance degradation in deep sub-micron circuits. Timing analyzers attempt to capture the effects of variation on delay with simplified models. The timing verification of RC or RLC networks requires the substitution of such simplified models with spatial stochastic processes that capture the random nature of process variations. The present work proposes a new and viable method to compute the stochastic response of interconnects. The technique models the stochastic response in an infinite dimensional Hilbert space in terms of orthogonal polynomial expansions. A finite representation is obtained by using the Galerkin approach of minimizing the Hilbert space norm of the residual error. The key advance of the proposed method is that it provides a functional representation of the response of the system in terms of the random variables that represent the process variations. The proposed algorithm has been implemented in a procedure called OPERA. Results from OPERA simulations on commercial design test cases match well with those from the classical Monte Carlo SPICE simulations and from perturbation methods. Additionally OPERA shows good computational efficiency: speedup factor of 60 has been observed over Monte Carlo SPICE simulations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA08 i1="01" i2="1" l="ENG">
<s1>Stochastic analysis of interconnect performance in the presence of process variations</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>ICCAD-2004 : International Conference on Computer Aided Design : November 7-11, 2004, DoubleTree Hotel, San Jose, CA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>WANG (Janet)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GHANTA (Praveen)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VRUDHULA (Sarma)</s1>
</fA11>
<fA14 i1="01">
<s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>IEEE Circuits and Systems Society</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>vol2, 880-886</s2>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>IEEE</s1>
<s2>Piscataway, N.J.</s2>
</fA25>
<fA25 i1="02">
<s1>ACM</s1>
<s2>New-York, N.Y.</s2>
</fA25>
<fA26 i1="01">
<s0>0-7803-8702-3</s0>
</fA26>
<fA30 i1="01" i2="1" l="ENG">
<s1>IEEE/ACM International Conference on Computer-Aided Design</s1>
<s3>San Jose CA USA</s3>
<s4>2004-11-07</s4>
</fA30>
<fA43 i1="01">
<s1>INIST</s1>
<s2>Y 38705</s2>
<s5>354000138704991270</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0156613</s0>
</fA47>
<fA60>
<s1>C</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Deformations in interconnect due to process variations can lead to significant performance degradation in deep sub-micron circuits. Timing analyzers attempt to capture the effects of variation on delay with simplified models. The timing verification of RC or RLC networks requires the substitution of such simplified models with spatial stochastic processes that capture the random nature of process variations. The present work proposes a new and viable method to compute the stochastic response of interconnects. The technique models the stochastic response in an infinite dimensional Hilbert space in terms of orthogonal polynomial expansions. A finite representation is obtained by using the Galerkin approach of minimizing the Hilbert space norm of the residual error. The key advance of the proposed method is that it provides a functional representation of the response of the system in terms of the random variables that represent the process variations. The proposed algorithm has been implemented in a procedure called OPERA. Results from OPERA simulations on commercial design test cases match well with those from the classical Monte Carlo SPICE simulations and from perturbation methods. Additionally OPERA shows good computational efficiency: speedup factor of 60 has been observed over Monte Carlo SPICE simulations.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B11</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F06B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Conception assistée</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Computer aided design</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Concepción asistida</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Conception circuit</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Circuit design</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Diseño circuito</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Processus stochastique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Stochastic process</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Proceso estocástico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Analyse stochastique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Stochastic analysis</s0>
<s5>18</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Análisis estocástico</s0>
<s5>18</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Système temporisé</s0>
<s5>20</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Timed system</s0>
<s5>20</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sistema temporizado</s0>
<s5>20</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Effet retard</s0>
<s5>21</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Delay effect</s0>
<s5>21</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Efecto retardo</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Appel procédure</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Procedure call</s0>
<s5>22</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Llamada procedimiento</s0>
<s5>22</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Analyse statistique</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Statistical analysis</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Análisis estadístico</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Méthode stochastique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Stochastic method</s0>
<s5>25</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Método estocástico</s0>
<s5>25</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Approche probabiliste</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Probabilistic approach</s0>
<s5>26</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Enfoque probabilista</s0>
<s5>26</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Espace Hilbert</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Hilbert space</s0>
<s5>27</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Espacio Hilbert</s0>
<s5>27</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Polynôme orthogonal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Orthogonal polynomial</s0>
<s5>28</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Polinomio ortogonal</s0>
<s5>28</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Méthode Galerkin</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Galerkin method</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Método Galerkin</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Variable aléatoire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Random variable</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Variable aléatoria</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Méthode Monte Carlo</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Monte Carlo method</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Método Monte Carlo</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Méthode perturbation</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Perturbation method</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Método perturbación</s0>
<s5>32</s5>
</fC03>
<fN21>
<s1>093</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0156613 INIST</NO>
<ET>Stochastic analysis of interconnect performance in the presence of process variations</ET>
<AU>WANG (Janet); GHANTA (Praveen); VRUDHULA (Sarma)</AU>
<AF>ECE Dept., Univ. of Arizona/Tucson, Arizona/Etats-Unis (1 aut., 2 aut., 3 aut.)</AF>
<DT>Congrès; Niveau analytique</DT>
<SO>IEEE/ACM International Conference on Computer-Aided Design/2004-11-07/San Jose CA USA; Etats-Unis; Piscataway, N.J., New-York, N.Y.: IEEE; Da. 2004; vol2, 880-886; ISBN 0-7803-8702-3</SO>
<LA>Anglais</LA>
<EA>Deformations in interconnect due to process variations can lead to significant performance degradation in deep sub-micron circuits. Timing analyzers attempt to capture the effects of variation on delay with simplified models. The timing verification of RC or RLC networks requires the substitution of such simplified models with spatial stochastic processes that capture the random nature of process variations. The present work proposes a new and viable method to compute the stochastic response of interconnects. The technique models the stochastic response in an infinite dimensional Hilbert space in terms of orthogonal polynomial expansions. A finite representation is obtained by using the Galerkin approach of minimizing the Hilbert space norm of the residual error. The key advance of the proposed method is that it provides a functional representation of the response of the system in terms of the random variables that represent the process variations. The proposed algorithm has been implemented in a procedure called OPERA. Results from OPERA simulations on commercial design test cases match well with those from the classical Monte Carlo SPICE simulations and from perturbation methods. Additionally OPERA shows good computational efficiency: speedup factor of 60 has been observed over Monte Carlo SPICE simulations.</EA>
<CC>001D02B11; 001D03F06B</CC>
<FD>Conception assistée; Conception circuit; Processus stochastique; Analyse stochastique; Evaluation performance; Système temporisé; Effet retard; Appel procédure; Analyse statistique; Modélisation; Méthode stochastique; Approche probabiliste; Espace Hilbert; Polynôme orthogonal; Méthode Galerkin; Variable aléatoire; Méthode Monte Carlo; Méthode perturbation</FD>
<ED>Computer aided design; Circuit design; Stochastic process; Stochastic analysis; Performance evaluation; Timed system; Delay effect; Procedure call; Statistical analysis; Modeling; Stochastic method; Probabilistic approach; Hilbert space; Orthogonal polynomial; Galerkin method; Random variable; Monte Carlo method; Perturbation method</ED>
<SD>Concepción asistida; Diseño circuito; Proceso estocástico; Análisis estocástico; Evaluación prestación; Sistema temporizado; Efecto retardo; Llamada procedimiento; Análisis estadístico; Modelización; Método estocástico; Enfoque probabilista; Espacio Hilbert; Polinomio ortogonal; Método Galerkin; Variable aléatoria; Método Monte Carlo; Método perturbación</SD>
<LO>INIST-Y 38705.354000138704991270</LO>
<ID>06-0156613</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000375 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000375 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0156613
   |texte=   Stochastic analysis of interconnect performance in the presence of process variations
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020