Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Superluminality and the equivalence postulate of quantum mechanics

Identifieur interne : 000098 ( PascalFrancis/Corpus ); précédent : 000097; suivant : 000099

Superluminality and the equivalence postulate of quantum mechanics

Auteurs : Alon E. Faraggi

Source :

RBID : Pascal:12-0194239

Descripteurs français

English descriptors

Abstract

An interpretation of the recent results reported by the OPERA collaboration is that neutrinos propagation in vacuum exceeds the speed of light. It has been further been suggested that this interpretation can be attributed to the variation of the particle average speed arising from the Relativistic Quantum Hamilton-Jacobi Equation. I derive an expression for the quantum correction to the instantaneous relativistic velocity in the framework of the relativistic quantum Hamilton-Jacobi equation, which is derived from the equivalence postulate of quantum mechanics. While the quantum correction does indicate deviations from the classical energy-momentum relation, it does not necessarily lead to superluminal speeds. The quantum correction found herein has a non-trivial dependence on the energy and mass of the particle, as well as on distance travelled. I speculate on other possible observational consequences of the equivalence postulate approach.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1434-6044
A03   1    @0 Eur. phys. j., C Part. fields : (Print)
A05       @2 72
A06       @2 3
A08 01  1  ENG  @1 Superluminality and the equivalence postulate of quantum mechanics
A11 01  1    @1 FARAGGI (Alon E.)
A14 01      @1 Department of Mathematical Sciences, University of Liverpool @2 Liverpool, L69 7ZL @3 GBR @Z 1 aut.
A20       @2 1944.1-1944.5
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 27152 @5 354000506912610430
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 46 ref.
A47 01  1    @0 12-0194239
A60       @1 P
A61       @0 A
A64 01  1    @0 European physical journal. C, Particles and fields : (Print)
A66 01      @0 DEU
C01 01    ENG  @0 An interpretation of the recent results reported by the OPERA collaboration is that neutrinos propagation in vacuum exceeds the speed of light. It has been further been suggested that this interpretation can be attributed to the variation of the particle average speed arising from the Relativistic Quantum Hamilton-Jacobi Equation. I derive an expression for the quantum correction to the instantaneous relativistic velocity in the framework of the relativistic quantum Hamilton-Jacobi equation, which is derived from the equivalence postulate of quantum mechanics. While the quantum correction does indicate deviations from the classical energy-momentum relation, it does not necessarily lead to superluminal speeds. The quantum correction found herein has a non-trivial dependence on the energy and mass of the particle, as well as on distance travelled. I speculate on other possible observational consequences of the equivalence postulate approach.
C02 01  3    @0 001B10
C03 01  X  FRE  @0 Equivalence @5 26
C03 01  X  ENG  @0 Equivalence @5 26
C03 01  X  SPA  @0 Equivalencia @5 26
C03 02  3  FRE  @0 Mécanique quantique @5 27
C03 02  3  ENG  @0 Quantum mechanics @5 27
C03 03  3  FRE  @0 Neutrino @5 28
C03 03  3  ENG  @0 Neutrinos @5 28
C03 04  3  FRE  @0 Vitesse lumière @5 29
C03 04  3  ENG  @0 Light velocity @5 29
C03 05  3  FRE  @0 Equation Hamilton Jacobi @5 30
C03 05  3  ENG  @0 Hamilton-Jacobi equations @5 30
C03 06  X  FRE  @0 Correction quantique @5 31
C03 06  X  ENG  @0 Quantum correction @5 31
C03 06  X  SPA  @0 Corrección cuántica @5 31
C03 07  3  FRE  @0 Physique mathématique @5 32
C03 07  3  ENG  @0 Mathematical physics @5 32
C03 08  3  FRE  @0 Particule élémentaire @5 33
C03 08  3  ENG  @0 Elementary particles @5 33
C03 09  3  FRE  @0 Particule sans masse @5 34
C03 09  3  ENG  @0 Massless particles @5 34
N21       @1 149
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0194239 INIST
ET : Superluminality and the equivalence postulate of quantum mechanics
AU : FARAGGI (Alon E.)
AF : Department of Mathematical Sciences, University of Liverpool/Liverpool, L69 7ZL/Royaume-Uni (1 aut.)
DT : Publication en série; Niveau analytique
SO : European physical journal. C, Particles and fields : (Print); ISSN 1434-6044; Allemagne; Da. 2012; Vol. 72; No. 3; 1944.1-1944.5; Bibl. 46 ref.
LA : Anglais
EA : An interpretation of the recent results reported by the OPERA collaboration is that neutrinos propagation in vacuum exceeds the speed of light. It has been further been suggested that this interpretation can be attributed to the variation of the particle average speed arising from the Relativistic Quantum Hamilton-Jacobi Equation. I derive an expression for the quantum correction to the instantaneous relativistic velocity in the framework of the relativistic quantum Hamilton-Jacobi equation, which is derived from the equivalence postulate of quantum mechanics. While the quantum correction does indicate deviations from the classical energy-momentum relation, it does not necessarily lead to superluminal speeds. The quantum correction found herein has a non-trivial dependence on the energy and mass of the particle, as well as on distance travelled. I speculate on other possible observational consequences of the equivalence postulate approach.
CC : 001B10
FD : Equivalence; Mécanique quantique; Neutrino; Vitesse lumière; Equation Hamilton Jacobi; Correction quantique; Physique mathématique; Particule élémentaire; Particule sans masse
ED : Equivalence; Quantum mechanics; Neutrinos; Light velocity; Hamilton-Jacobi equations; Quantum correction; Mathematical physics; Elementary particles; Massless particles
SD : Equivalencia; Corrección cuántica
LO : INIST-27152.354000506912610430
ID : 12-0194239

Links to Exploration step

Pascal:12-0194239

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Superluminality and the equivalence postulate of quantum mechanics</title>
<author>
<name sortKey="Faraggi, Alon E" sort="Faraggi, Alon E" uniqKey="Faraggi A" first="Alon E." last="Faraggi">Alon E. Faraggi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mathematical Sciences, University of Liverpool</s1>
<s2>Liverpool, L69 7ZL</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0194239</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0194239 INIST</idno>
<idno type="RBID">Pascal:12-0194239</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000098</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Superluminality and the equivalence postulate of quantum mechanics</title>
<author>
<name sortKey="Faraggi, Alon E" sort="Faraggi, Alon E" uniqKey="Faraggi A" first="Alon E." last="Faraggi">Alon E. Faraggi</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Department of Mathematical Sciences, University of Liverpool</s1>
<s2>Liverpool, L69 7ZL</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">European physical journal. C, Particles and fields : (Print)</title>
<title level="j" type="abbreviated">Eur. phys. j., C Part. fields : (Print)</title>
<idno type="ISSN">1434-6044</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">European physical journal. C, Particles and fields : (Print)</title>
<title level="j" type="abbreviated">Eur. phys. j., C Part. fields : (Print)</title>
<idno type="ISSN">1434-6044</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Elementary particles</term>
<term>Equivalence</term>
<term>Hamilton-Jacobi equations</term>
<term>Light velocity</term>
<term>Massless particles</term>
<term>Mathematical physics</term>
<term>Neutrinos</term>
<term>Quantum correction</term>
<term>Quantum mechanics</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Equivalence</term>
<term>Mécanique quantique</term>
<term>Neutrino</term>
<term>Vitesse lumière</term>
<term>Equation Hamilton Jacobi</term>
<term>Correction quantique</term>
<term>Physique mathématique</term>
<term>Particule élémentaire</term>
<term>Particule sans masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An interpretation of the recent results reported by the OPERA collaboration is that neutrinos propagation in vacuum exceeds the speed of light. It has been further been suggested that this interpretation can be attributed to the variation of the particle average speed arising from the Relativistic Quantum Hamilton-Jacobi Equation. I derive an expression for the quantum correction to the instantaneous relativistic velocity in the framework of the relativistic quantum Hamilton-Jacobi equation, which is derived from the equivalence postulate of quantum mechanics. While the quantum correction does indicate deviations from the classical energy-momentum relation, it does not necessarily lead to superluminal speeds. The quantum correction found herein has a non-trivial dependence on the energy and mass of the particle, as well as on distance travelled. I speculate on other possible observational consequences of the equivalence postulate approach.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1434-6044</s0>
</fA01>
<fA03 i2="1">
<s0>Eur. phys. j., C Part. fields : (Print)</s0>
</fA03>
<fA05>
<s2>72</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Superluminality and the equivalence postulate of quantum mechanics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FARAGGI (Alon E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Mathematical Sciences, University of Liverpool</s1>
<s2>Liverpool, L69 7ZL</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s2>1944.1-1944.5</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27152</s2>
<s5>354000506912610430</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>46 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0194239</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>European physical journal. C, Particles and fields : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>An interpretation of the recent results reported by the OPERA collaboration is that neutrinos propagation in vacuum exceeds the speed of light. It has been further been suggested that this interpretation can be attributed to the variation of the particle average speed arising from the Relativistic Quantum Hamilton-Jacobi Equation. I derive an expression for the quantum correction to the instantaneous relativistic velocity in the framework of the relativistic quantum Hamilton-Jacobi equation, which is derived from the equivalence postulate of quantum mechanics. While the quantum correction does indicate deviations from the classical energy-momentum relation, it does not necessarily lead to superluminal speeds. The quantum correction found herein has a non-trivial dependence on the energy and mass of the particle, as well as on distance travelled. I speculate on other possible observational consequences of the equivalence postulate approach.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Equivalence</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Equivalence</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Equivalencia</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Mécanique quantique</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Quantum mechanics</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Neutrino</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Neutrinos</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Vitesse lumière</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Light velocity</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Equation Hamilton Jacobi</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Hamilton-Jacobi equations</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Correction quantique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Quantum correction</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Corrección cuántica</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Physique mathématique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Mathematical physics</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Particule élémentaire</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Elementary particles</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Particule sans masse</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Massless particles</s0>
<s5>34</s5>
</fC03>
<fN21>
<s1>149</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0194239 INIST</NO>
<ET>Superluminality and the equivalence postulate of quantum mechanics</ET>
<AU>FARAGGI (Alon E.)</AU>
<AF>Department of Mathematical Sciences, University of Liverpool/Liverpool, L69 7ZL/Royaume-Uni (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>European physical journal. C, Particles and fields : (Print); ISSN 1434-6044; Allemagne; Da. 2012; Vol. 72; No. 3; 1944.1-1944.5; Bibl. 46 ref.</SO>
<LA>Anglais</LA>
<EA>An interpretation of the recent results reported by the OPERA collaboration is that neutrinos propagation in vacuum exceeds the speed of light. It has been further been suggested that this interpretation can be attributed to the variation of the particle average speed arising from the Relativistic Quantum Hamilton-Jacobi Equation. I derive an expression for the quantum correction to the instantaneous relativistic velocity in the framework of the relativistic quantum Hamilton-Jacobi equation, which is derived from the equivalence postulate of quantum mechanics. While the quantum correction does indicate deviations from the classical energy-momentum relation, it does not necessarily lead to superluminal speeds. The quantum correction found herein has a non-trivial dependence on the energy and mass of the particle, as well as on distance travelled. I speculate on other possible observational consequences of the equivalence postulate approach.</EA>
<CC>001B10</CC>
<FD>Equivalence; Mécanique quantique; Neutrino; Vitesse lumière; Equation Hamilton Jacobi; Correction quantique; Physique mathématique; Particule élémentaire; Particule sans masse</FD>
<ED>Equivalence; Quantum mechanics; Neutrinos; Light velocity; Hamilton-Jacobi equations; Quantum correction; Mathematical physics; Elementary particles; Massless particles</ED>
<SD>Equivalencia; Corrección cuántica</SD>
<LO>INIST-27152.354000506912610430</LO>
<ID>12-0194239</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000098 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000098 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0194239
   |texte=   Superluminality and the equivalence postulate of quantum mechanics
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020