Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass

Identifieur interne : 000084 ( PascalFrancis/Corpus ); précédent : 000083; suivant : 000085

Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass

Auteurs : Daniele Fargion ; Daniele D'Armiento

Source :

RBID : Pascal:12-0326865

Descripteurs français

English descriptors

Abstract

We tried to fit in any way the recent OPERA-CERN claims of a neutrino superluminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic ve component and a superluminal vμ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between ve and vμ, vτ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0954-3899
A02 01      @0 JPGPED
A03   1    @0 J. phys., G, Nucl. part. phys. : (Print)
A05       @2 39
A06       @2 8
A08 01  1  ENG  @1 Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass
A11 01  1    @1 FARGION (Daniele)
A11 02  1    @1 D'ARMIENTO (Daniele)
A14 01      @1 Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2 @2 00185 Rome @3 ITA @Z 1 aut. @Z 2 aut.
A20       @2 085002.1-085002.9
A21       @1 2012
A23 01      @0 ENG
A43 01      @1 INIST @2 577G @5 354000508344320050
A44       @0 0000 @1 © 2012 INIST-CNRS. All rights reserved.
A45       @0 9 ref.
A47 01  1    @0 12-0326865
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of physics. G. Nuclear and particle physics : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 We tried to fit in any way the recent OPERA-CERN claims of a neutrino superluminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic ve component and a superluminal vμ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between ve and vμ, vτ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.
C02 01  3    @0 001B20
C02 02  3    @0 001B10
C03 01  3  FRE  @0 CERN @5 26
C03 01  3  ENG  @0 CERN @5 26
C03 02  3  FRE  @0 Neutrino @5 27
C03 02  3  ENG  @0 Neutrinos @5 27
C03 03  3  FRE  @0 Mélangeage @5 28
C03 03  3  ENG  @0 Mixing @5 28
C03 04  3  FRE  @0 Masse neutrino @5 29
C03 04  3  ENG  @0 Neutrino mass @5 29
C03 05  3  FRE  @0 Supernova @5 30
C03 05  3  ENG  @0 Supernovae @5 30
C03 06  3  FRE  @0 Oscillation neutrino @5 31
C03 06  3  ENG  @0 Neutrino oscillations @5 31
C03 07  3  FRE  @0 Flaveur @5 32
C03 07  3  ENG  @0 Flavor @5 32
C03 08  3  FRE  @0 Tachyon @5 33
C03 08  3  ENG  @0 Tachyons @5 33
C03 09  3  FRE  @0 Timing @5 34
C03 09  3  ENG  @0 Timing @5 34
C03 10  X  FRE  @0 Modèle @5 35
C03 10  X  ENG  @0 Models @5 35
C03 10  X  SPA  @0 Modelo @5 35
C03 11  3  FRE  @0 Détection neutrino @5 36
C03 11  3  ENG  @0 Neutrino detection @5 36
C03 12  3  FRE  @0 Graviton @5 37
C03 12  3  ENG  @0 Gravitons @5 37
C03 13  3  FRE  @0 Temps retard @5 38
C03 13  3  ENG  @0 Time delay @5 38
C03 14  3  FRE  @0 Gravité @5 39
C03 14  3  ENG  @0 Gravity @5 39
C03 15  3  FRE  @0 Neutronisation @5 40
C03 15  3  ENG  @0 Neutronization @5 40
C03 16  X  FRE  @0 Explosion supernova @5 41
C03 16  X  ENG  @0 Supernovae explosion @5 41
C03 16  X  SPA  @0 Explosión supernova @5 41
C03 17  3  FRE  @0 Physique mathématique @5 42
C03 17  3  ENG  @0 Mathematical physics @5 42
C03 18  3  FRE  @0 Physique nucléaire @5 43
C03 18  3  ENG  @0 Nuclear physics @5 43
C03 19  3  FRE  @0 Particule sans masse @5 44
C03 19  3  ENG  @0 Massless particles @5 44
C03 20  3  FRE  @0 Masse particule élémentaire @5 45
C03 20  3  ENG  @0 Elementary particle mass @5 45
C03 21  3  FRE  @0 Particule élémentaire @5 46
C03 21  3  ENG  @0 Elementary particles @5 46
N21       @1 247
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 12-0326865 INIST
ET : Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass
AU : FARGION (Daniele); D'ARMIENTO (Daniele)
AF : Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2/00185 Rome/Italie (1 aut., 2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of physics. G. Nuclear and particle physics : (Print); ISSN 0954-3899; Coden JPGPED; Royaume-Uni; Da. 2012; Vol. 39; No. 8; 085002.1-085002.9; Bibl. 9 ref.
LA : Anglais
EA : We tried to fit in any way the recent OPERA-CERN claims of a neutrino superluminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic ve component and a superluminal vμ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between ve and vμ, vτ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.
CC : 001B20; 001B10
FD : CERN; Neutrino; Mélangeage; Masse neutrino; Supernova; Oscillation neutrino; Flaveur; Tachyon; Timing; Modèle; Détection neutrino; Graviton; Temps retard; Gravité; Neutronisation; Explosion supernova; Physique mathématique; Physique nucléaire; Particule sans masse; Masse particule élémentaire; Particule élémentaire
ED : CERN; Neutrinos; Mixing; Neutrino mass; Supernovae; Neutrino oscillations; Flavor; Tachyons; Timing; Models; Neutrino detection; Gravitons; Time delay; Gravity; Neutronization; Supernovae explosion; Mathematical physics; Nuclear physics; Massless particles; Elementary particle mass; Elementary particles
SD : Modelo; Explosión supernova
LO : INIST-577G.354000508344320050
ID : 12-0326865

Links to Exploration step

Pascal:12-0326865

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
<author>
<name sortKey="Fargion, Daniele" sort="Fargion, Daniele" uniqKey="Fargion D" first="Daniele" last="Fargion">Daniele Fargion</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2</s1>
<s2>00185 Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="D Armiento, Daniele" sort="D Armiento, Daniele" uniqKey="D Armiento D" first="Daniele" last="D'Armiento">Daniele D'Armiento</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2</s1>
<s2>00185 Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0326865</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0326865 INIST</idno>
<idno type="RBID">Pascal:12-0326865</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000084</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
<author>
<name sortKey="Fargion, Daniele" sort="Fargion, Daniele" uniqKey="Fargion D" first="Daniele" last="Fargion">Daniele Fargion</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2</s1>
<s2>00185 Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="D Armiento, Daniele" sort="D Armiento, Daniele" uniqKey="D Armiento D" first="Daniele" last="D'Armiento">Daniele D'Armiento</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2</s1>
<s2>00185 Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of physics. G. Nuclear and particle physics : (Print)</title>
<title level="j" type="abbreviated">J. phys., G, Nucl. part. phys. : (Print)</title>
<idno type="ISSN">0954-3899</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of physics. G. Nuclear and particle physics : (Print)</title>
<title level="j" type="abbreviated">J. phys., G, Nucl. part. phys. : (Print)</title>
<idno type="ISSN">0954-3899</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CERN</term>
<term>Elementary particle mass</term>
<term>Elementary particles</term>
<term>Flavor</term>
<term>Gravitons</term>
<term>Gravity</term>
<term>Massless particles</term>
<term>Mathematical physics</term>
<term>Mixing</term>
<term>Models</term>
<term>Neutrino detection</term>
<term>Neutrino mass</term>
<term>Neutrino oscillations</term>
<term>Neutrinos</term>
<term>Neutronization</term>
<term>Nuclear physics</term>
<term>Supernovae</term>
<term>Supernovae explosion</term>
<term>Tachyons</term>
<term>Time delay</term>
<term>Timing</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>CERN</term>
<term>Neutrino</term>
<term>Mélangeage</term>
<term>Masse neutrino</term>
<term>Supernova</term>
<term>Oscillation neutrino</term>
<term>Flaveur</term>
<term>Tachyon</term>
<term>Timing</term>
<term>Modèle</term>
<term>Détection neutrino</term>
<term>Graviton</term>
<term>Temps retard</term>
<term>Gravité</term>
<term>Neutronisation</term>
<term>Explosion supernova</term>
<term>Physique mathématique</term>
<term>Physique nucléaire</term>
<term>Particule sans masse</term>
<term>Masse particule élémentaire</term>
<term>Particule élémentaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We tried to fit in any way the recent OPERA-CERN claims of a neutrino superluminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic v
<sub>e</sub>
component and a superluminal v
<sub>μ</sub>
) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between v
<sub>e</sub>
and v
<sub>μ</sub>
, v
<sub>τ</sub>
) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0954-3899</s0>
</fA01>
<fA02 i1="01">
<s0>JPGPED</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., G, Nucl. part. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>39</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FARGION (Daniele)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>D'ARMIENTO (Daniele)</s1>
</fA11>
<fA14 i1="01">
<s1>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2</s1>
<s2>00185 Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>085002.1-085002.9</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577G</s2>
<s5>354000508344320050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>9 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0326865</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. G. Nuclear and particle physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We tried to fit in any way the recent OPERA-CERN claims of a neutrino superluminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic v
<sub>e</sub>
component and a superluminal v
<sub>μ</sub>
) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between v
<sub>e</sub>
and v
<sub>μ</sub>
, v
<sub>τ</sub>
) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B20</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B10</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>CERN</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>CERN</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Neutrino</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Neutrinos</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Mélangeage</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Mixing</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Masse neutrino</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Neutrino mass</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Supernova</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Supernovae</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Oscillation neutrino</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Neutrino oscillations</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Flaveur</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Flavor</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Tachyon</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Tachyons</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Timing</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Timing</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Models</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Détection neutrino</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Neutrino detection</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Graviton</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gravitons</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Temps retard</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Time delay</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gravité</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gravity</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Neutronisation</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Neutronization</s0>
<s5>40</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Explosion supernova</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Supernovae explosion</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Explosión supernova</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Physique mathématique</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Mathematical physics</s0>
<s5>42</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Physique nucléaire</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Nuclear physics</s0>
<s5>43</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Particule sans masse</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Massless particles</s0>
<s5>44</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Masse particule élémentaire</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Elementary particle mass</s0>
<s5>45</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Particule élémentaire</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Elementary particles</s0>
<s5>46</s5>
</fC03>
<fN21>
<s1>247</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 12-0326865 INIST</NO>
<ET>Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</ET>
<AU>FARGION (Daniele); D'ARMIENTO (Daniele)</AU>
<AF>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2/00185 Rome/Italie (1 aut., 2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of physics. G. Nuclear and particle physics : (Print); ISSN 0954-3899; Coden JPGPED; Royaume-Uni; Da. 2012; Vol. 39; No. 8; 085002.1-085002.9; Bibl. 9 ref.</SO>
<LA>Anglais</LA>
<EA>We tried to fit in any way the recent OPERA-CERN claims of a neutrino superluminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic v
<sub>e</sub>
component and a superluminal v
<sub>μ</sub>
) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between v
<sub>e</sub>
and v
<sub>μ</sub>
, v
<sub>τ</sub>
) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.</EA>
<CC>001B20; 001B10</CC>
<FD>CERN; Neutrino; Mélangeage; Masse neutrino; Supernova; Oscillation neutrino; Flaveur; Tachyon; Timing; Modèle; Détection neutrino; Graviton; Temps retard; Gravité; Neutronisation; Explosion supernova; Physique mathématique; Physique nucléaire; Particule sans masse; Masse particule élémentaire; Particule élémentaire</FD>
<ED>CERN; Neutrinos; Mixing; Neutrino mass; Supernovae; Neutrino oscillations; Flavor; Tachyons; Timing; Models; Neutrino detection; Gravitons; Time delay; Gravity; Neutronization; Supernovae explosion; Mathematical physics; Nuclear physics; Massless particles; Elementary particle mass; Elementary particles</ED>
<SD>Modelo; Explosión supernova</SD>
<LO>INIST-577G.354000508344320050</LO>
<ID>12-0326865</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000084 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000084 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:12-0326865
   |texte=   Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020