Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography

Identifieur interne : 000407 ( PascalFrancis/Checkpoint ); précédent : 000406; suivant : 000408

Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography

Auteurs : M. Straub [Australie] ; L. H. Nguyen [Australie] ; A. Fazlic [Australie] ; M. Gu [Australie]

Source :

RBID : Pascal:05-0234528

Descripteurs français

English descriptors

Abstract

Two-photon photopolymerization of inorganic-organic hybrid materials permits the generation of complex-shaped three-dimensional microstructures at submicrometer resolution of structural elements. Due to their favorable optical, chemical and thermal properties these materials are particularly useful for photonic microdevice fabrication. Focussing ultrashort pulsed visible light into a modified commercially available polysiloxane polymer a Sydney Opera House design and a series of woodpile-type photonic crystals were fabricated. Fourier transform infrared spectroscopy revealed photonic stop gaps in the stacking direction at wavelengths varying from 6 to 4 μm upon reduction of the woodpile rod size. The structures allowed for the observation of higher-order stop gaps.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0234528

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography</title>
<author>
<name sortKey="Straub, M" sort="Straub, M" uniqKey="Straub M" first="M." last="Straub">M. Straub</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, Victoria 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, L H" sort="Nguyen, L H" uniqKey="Nguyen L" first="L. H." last="Nguyen">L. H. Nguyen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, Victoria 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fazlic, A" sort="Fazlic, A" uniqKey="Fazlic A" first="A." last="Fazlic">A. Fazlic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, Victoria 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gu, M" sort="Gu, M" uniqKey="Gu M" first="M." last="Gu">M. Gu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, Victoria 3122</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">05-0234528</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 05-0234528 INIST</idno>
<idno type="RBID">Pascal:05-0234528</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000400</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000203</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000407</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography</title>
<author>
<name sortKey="Straub, M" sort="Straub, M" uniqKey="Straub M" first="M." last="Straub">M. Straub</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, Victoria 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nguyen, L H" sort="Nguyen, L H" uniqKey="Nguyen L" first="L. H." last="Nguyen">L. H. Nguyen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, Victoria 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fazlic, A" sort="Fazlic, A" uniqKey="Fazlic A" first="A." last="Fazlic">A. Fazlic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, Victoria 3122</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gu, M" sort="Gu, M" uniqKey="Gu M" first="M." last="Gu">M. Gu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Hawthorn, Victoria 3122</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Optical materials : (Amsterdam)</title>
<title level="j" type="abbreviated">Opt. mater. : (Amst.)</title>
<idno type="ISSN">0925-3467</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Optical materials : (Amsterdam)</title>
<title level="j" type="abbreviated">Opt. mater. : (Amst.)</title>
<idno type="ISSN">0925-3467</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Experimental study</term>
<term>Fourier transformation</term>
<term>Microstructure</term>
<term>Organic-inorganic hybrid materials</term>
<term>Photonic band gap</term>
<term>Photonic crystals</term>
<term>Photopolymerization</term>
<term>Polymers</term>
<term>Silicones</term>
<term>Stereolithography</term>
<term>Thermal properties</term>
<term>Three dimensional structure</term>
<term>Two-photon processes</term>
<term>Visible radiation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Processus 2 photons</term>
<term>Transformation Fourier</term>
<term>Etude expérimentale</term>
<term>Rayonnement visible</term>
<term>Microstructure</term>
<term>Propriété thermique</term>
<term>Bande interdite photonique</term>
<term>Structure 3 dimensions</term>
<term>Cristal photonique</term>
<term>Matériau hybride organique minéral</term>
<term>Siloxane polymère</term>
<term>Polymérisation photochimique</term>
<term>Stéréolithographie</term>
<term>Polymère</term>
<term>4270Q</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Two-photon photopolymerization of inorganic-organic hybrid materials permits the generation of complex-shaped three-dimensional microstructures at submicrometer resolution of structural elements. Due to their favorable optical, chemical and thermal properties these materials are particularly useful for photonic microdevice fabrication. Focussing ultrashort pulsed visible light into a modified commercially available polysiloxane polymer a Sydney Opera House design and a series of woodpile-type photonic crystals were fabricated. Fourier transform infrared spectroscopy revealed photonic stop gaps in the stacking direction at wavelengths varying from 6 to 4 μm upon reduction of the woodpile rod size. The structures allowed for the observation of higher-order stop gaps.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-3467</s0>
</fA01>
<fA03 i2="1">
<s0>Opt. mater. : (Amst.)</s0>
</fA03>
<fA05>
<s2>27</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>STRAUB (M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>NGUYEN (L. H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FAZLIC (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GU (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Centre for Micro-Photonics, Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Biophysical Sciences and Electrical Engineering, Swinburne University of Technology, Mail 31, P.O. Box 218</s1>
<s2>Hawthorn, Victoria 3122</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>359-364</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22598</s2>
<s5>354000126110430010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0234528</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Optical materials : (Amsterdam)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Two-photon photopolymerization of inorganic-organic hybrid materials permits the generation of complex-shaped three-dimensional microstructures at submicrometer resolution of structural elements. Due to their favorable optical, chemical and thermal properties these materials are particularly useful for photonic microdevice fabrication. Focussing ultrashort pulsed visible light into a modified commercially available polysiloxane polymer a Sydney Opera House design and a series of woodpile-type photonic crystals were fabricated. Fourier transform infrared spectroscopy revealed photonic stop gaps in the stacking direction at wavelengths varying from 6 to 4 μm upon reduction of the woodpile rod size. The structures allowed for the observation of higher-order stop gaps.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B70Q</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Processus 2 photons</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Two-photon processes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Transformation Fourier</s0>
<s5>23</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Fourier transformation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Rayonnement visible</s0>
<s5>37</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Visible radiation</s0>
<s5>37</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>42</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>42</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Bande interdite photonique</s0>
<s5>43</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photonic band gap</s0>
<s5>43</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Structure 3 dimensions</s0>
<s5>47</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Three dimensional structure</s0>
<s5>47</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estructura 3 dimensiones</s0>
<s5>47</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Cristal photonique</s0>
<s5>57</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Photonic crystals</s0>
<s5>57</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Matériau hybride organique minéral</s0>
<s5>58</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Organic-inorganic hybrid materials</s0>
<s5>58</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Siloxane polymère</s0>
<s5>61</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Silicones</s0>
<s5>61</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Polymérisation photochimique</s0>
<s5>62</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Photopolymerization</s0>
<s5>62</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Stéréolithographie</s0>
<s5>63</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Stereolithography</s0>
<s5>63</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Stereolitografia</s0>
<s5>63</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Polymère</s0>
<s5>65</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Polymers</s0>
<s5>65</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>4270Q</s0>
<s4>INC</s4>
<s5>79</s5>
</fC03>
<fN21>
<s1>157</s1>
</fN21>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Straub, M" sort="Straub, M" uniqKey="Straub M" first="M." last="Straub">M. Straub</name>
</noRegion>
<name sortKey="Fazlic, A" sort="Fazlic, A" uniqKey="Fazlic A" first="A." last="Fazlic">A. Fazlic</name>
<name sortKey="Gu, M" sort="Gu, M" uniqKey="Gu M" first="M." last="Gu">M. Gu</name>
<name sortKey="Nguyen, L H" sort="Nguyen, L H" uniqKey="Nguyen L" first="L. H." last="Nguyen">L. H. Nguyen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000407 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000407 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:05-0234528
   |texte=   Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020