Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass

Identifieur interne : 000070 ( PascalFrancis/Checkpoint ); précédent : 000069; suivant : 000071

Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass

Auteurs : Daniele Fargion [Italie] ; Daniele D'Armiento [Italie]

Source :

RBID : Pascal:12-0326865

Descripteurs français

English descriptors

Abstract

We tried to fit in any way the recent OPERA-CERN claims of a neutrino superluminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic ve component and a superluminal vμ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between ve and vμ, vτ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0326865

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
<author>
<name sortKey="Fargion, Daniele" sort="Fargion, Daniele" uniqKey="Fargion D" first="Daniele" last="Fargion">Daniele Fargion</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2</s1>
<s2>00185 Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="D Armiento, Daniele" sort="D Armiento, Daniele" uniqKey="D Armiento D" first="Daniele" last="D'Armiento">Daniele D'Armiento</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2</s1>
<s2>00185 Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">12-0326865</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0326865 INIST</idno>
<idno type="RBID">Pascal:12-0326865</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000084</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000451</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000070</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
<author>
<name sortKey="Fargion, Daniele" sort="Fargion, Daniele" uniqKey="Fargion D" first="Daniele" last="Fargion">Daniele Fargion</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2</s1>
<s2>00185 Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="D Armiento, Daniele" sort="D Armiento, Daniele" uniqKey="D Armiento D" first="Daniele" last="D'Armiento">Daniele D'Armiento</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2</s1>
<s2>00185 Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of physics. G. Nuclear and particle physics : (Print)</title>
<title level="j" type="abbreviated">J. phys., G, Nucl. part. phys. : (Print)</title>
<idno type="ISSN">0954-3899</idno>
<imprint>
<date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of physics. G. Nuclear and particle physics : (Print)</title>
<title level="j" type="abbreviated">J. phys., G, Nucl. part. phys. : (Print)</title>
<idno type="ISSN">0954-3899</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CERN</term>
<term>Elementary particle mass</term>
<term>Elementary particles</term>
<term>Flavor</term>
<term>Gravitons</term>
<term>Gravity</term>
<term>Massless particles</term>
<term>Mathematical physics</term>
<term>Mixing</term>
<term>Models</term>
<term>Neutrino detection</term>
<term>Neutrino mass</term>
<term>Neutrino oscillations</term>
<term>Neutrinos</term>
<term>Neutronization</term>
<term>Nuclear physics</term>
<term>Supernovae</term>
<term>Supernovae explosion</term>
<term>Tachyons</term>
<term>Time delay</term>
<term>Timing</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>CERN</term>
<term>Neutrino</term>
<term>Mélangeage</term>
<term>Masse neutrino</term>
<term>Supernova</term>
<term>Oscillation neutrino</term>
<term>Flaveur</term>
<term>Tachyon</term>
<term>Timing</term>
<term>Modèle</term>
<term>Détection neutrino</term>
<term>Graviton</term>
<term>Temps retard</term>
<term>Gravité</term>
<term>Neutronisation</term>
<term>Explosion supernova</term>
<term>Physique mathématique</term>
<term>Physique nucléaire</term>
<term>Particule sans masse</term>
<term>Masse particule élémentaire</term>
<term>Particule élémentaire</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Physique nucléaire</term>
<term>Particule élémentaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We tried to fit in any way the recent OPERA-CERN claims of a neutrino superluminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic v
<sub>e</sub>
component and a superluminal v
<sub>μ</sub>
) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between v
<sub>e</sub>
and v
<sub>μ</sub>
, v
<sub>τ</sub>
) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0954-3899</s0>
</fA01>
<fA02 i1="01">
<s0>JPGPED</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., G, Nucl. part. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>39</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FARGION (Daniele)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>D'ARMIENTO (Daniele)</s1>
</fA11>
<fA14 i1="01">
<s1>Physics Department, Rome University 1, Sapienza and INFN, Roma1 -PI A Moro 2</s1>
<s2>00185 Rome</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>085002.1-085002.9</s2>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577G</s2>
<s5>354000508344320050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>9 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0326865</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. G. Nuclear and particle physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We tried to fit in any way the recent OPERA-CERN claims of a neutrino superluminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB-Kamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN-OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic v
<sub>e</sub>
component and a superluminal v
<sub>μ</sub>
) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between v
<sub>e</sub>
and v
<sub>μ</sub>
, v
<sub>τ</sub>
) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA-CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton-neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B20</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B10</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>CERN</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>CERN</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Neutrino</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Neutrinos</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Mélangeage</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Mixing</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Masse neutrino</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Neutrino mass</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Supernova</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Supernovae</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Oscillation neutrino</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Neutrino oscillations</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Flaveur</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Flavor</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Tachyon</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Tachyons</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Timing</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Timing</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modèle</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Models</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelo</s0>
<s5>35</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Détection neutrino</s0>
<s5>36</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Neutrino detection</s0>
<s5>36</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Graviton</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gravitons</s0>
<s5>37</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Temps retard</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Time delay</s0>
<s5>38</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gravité</s0>
<s5>39</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gravity</s0>
<s5>39</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Neutronisation</s0>
<s5>40</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Neutronization</s0>
<s5>40</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Explosion supernova</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Supernovae explosion</s0>
<s5>41</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Explosión supernova</s0>
<s5>41</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Physique mathématique</s0>
<s5>42</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Mathematical physics</s0>
<s5>42</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Physique nucléaire</s0>
<s5>43</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Nuclear physics</s0>
<s5>43</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Particule sans masse</s0>
<s5>44</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Massless particles</s0>
<s5>44</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Masse particule élémentaire</s0>
<s5>45</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Elementary particle mass</s0>
<s5>45</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Particule élémentaire</s0>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Elementary particles</s0>
<s5>46</s5>
</fC03>
<fN21>
<s1>247</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
<region>
<li>Latium</li>
</region>
<settlement>
<li>Rome</li>
</settlement>
</list>
<tree>
<country name="Italie">
<region name="Latium">
<name sortKey="Fargion, Daniele" sort="Fargion, Daniele" uniqKey="Fargion D" first="Daniele" last="Fargion">Daniele Fargion</name>
</region>
<name sortKey="D Armiento, Daniele" sort="D Armiento, Daniele" uniqKey="D Armiento D" first="Daniele" last="D'Armiento">Daniele D'Armiento</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000070 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000070 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:12-0326865
   |texte=   Inconsistency in super-luminal CERN-OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020