The Application of Accurate Calculation of Magnetic Field Intensity in 1.5-T Superconducting MRI Magnet Design
Identifieur interne : 000051 ( PascalFrancis/Checkpoint ); précédent : 000050; suivant : 000052The Application of Accurate Calculation of Magnetic Field Intensity in 1.5-T Superconducting MRI Magnet Design
Auteurs : ZHONGKUI FENG [République populaire de Chine] ; LANKAI LI [République populaire de Chine] ; CHUNJIE GAO [République populaire de Chine] ; GUANG ZHU [République populaire de Chine] ; YI LI [République populaire de Chine] ; XIAN LI [République populaire de Chine] ; YINMING DAI [République populaire de Chine] ; QIULIANG WANG [République populaire de Chine]Source :
- IEEE transactions on applied superconductivity [ 1051-8223 ] ; 2012.
Descripteurs français
- Pascal (Inist)
- Champ magnétique, Electroaimant supraconducteur, Imagerie RMN, Solénoïde, Fil supraconducteur, Densité courant, Distribution courant, Matière charge, Simulation mathématique, Aimant, Hétérogénéité, Harmonique, Homogénéité, Paramètre s, Optimisation, Algorithme, Logiciel MATLAB, Contrainte thermique, Instabilité thermique de la polarisation.
English descriptors
- KwdEn :
- Algorithm, Bias temperature instability, Current density, Current distribution, Filler, Harmonic, Heterogeneity, Homogeneity, MATLAB software, Magnet, Magnetic field, Mathematical simulation, Nuclear magnetic resonance imaging, Optimization, Solenoid, Superconducting magnet, Superconducting wires, Thermal stress, s parameter.
Abstract
Currently, when calculating the magnetic field generated by the solenoid coil of the superconducting wire wound, we assume that the coil cross section with a uniform current density, but actual current in superconducting wires (NbTi) in the form of a wire in channel is not evenly distributed, the current distribution only in the superconducting core, i.e., there is no current in copper, insulation, and filler, and this method of calculation will result in errors. In this paper, we model the superconducting cores of the 1.5-T superconducting magnetic resonance imaging (MRI) magnet to calculate accurate magnetic field intensity and inhomogeneity by helicoidal method in the diameter of spherical volume and find that inhomogeneity is eight times bigger than that calculated by spherical harmonic expansions, which cannot be accepted in design. Hence, in order to design a high-homogeneity MRI magnet, we amend the 1.5-T MRI magnet's original parameters by an optimization algorithm through an original interface between OPERA-3D and MATLAB according to the accurate results.
Affiliations:
Links toward previous steps (curation, corpus...)
Links to Exploration step
Pascal:13-0098987Le document en format XML
<record><TEI><teiHeader><fileDesc><titleStmt><title xml:lang="en" level="a">The Application of Accurate Calculation of Magnetic Field Intensity in 1.5-T Superconducting MRI Magnet Design</title>
<author><name sortKey="Zhongkui Feng" sort="Zhongkui Feng" uniqKey="Zhongkui Feng" last="Zhongkui Feng">ZHONGKUI FENG</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Lankai Li" sort="Lankai Li" uniqKey="Lankai Li" last="Lankai Li">LANKAI LI</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Chunjie Gao" sort="Chunjie Gao" uniqKey="Chunjie Gao" last="Chunjie Gao">CHUNJIE GAO</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Guang Zhu" sort="Guang Zhu" uniqKey="Guang Zhu" last="Guang Zhu">GUANG ZHU</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Yi Li" sort="Yi Li" uniqKey="Yi Li" last="Yi Li">YI LI</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Xian Li" sort="Xian Li" uniqKey="Xian Li" last="Xian Li">XIAN LI</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Yinming Dai" sort="Yinming Dai" uniqKey="Yinming Dai" last="Yinming Dai">YINMING DAI</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Qiuliang Wang" sort="Qiuliang Wang" uniqKey="Qiuliang Wang" last="Qiuliang Wang">QIULIANG WANG</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt><idno type="wicri:source">INIST</idno>
<idno type="inist">13-0098987</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0098987 INIST</idno>
<idno type="RBID">Pascal:13-0098987</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000043</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000479</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000051</idno>
</publicationStmt>
<sourceDesc><biblStruct><analytic><title xml:lang="en" level="a">The Application of Accurate Calculation of Magnetic Field Intensity in 1.5-T Superconducting MRI Magnet Design</title>
<author><name sortKey="Zhongkui Feng" sort="Zhongkui Feng" uniqKey="Zhongkui Feng" last="Zhongkui Feng">ZHONGKUI FENG</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Lankai Li" sort="Lankai Li" uniqKey="Lankai Li" last="Lankai Li">LANKAI LI</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Chunjie Gao" sort="Chunjie Gao" uniqKey="Chunjie Gao" last="Chunjie Gao">CHUNJIE GAO</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Guang Zhu" sort="Guang Zhu" uniqKey="Guang Zhu" last="Guang Zhu">GUANG ZHU</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Yi Li" sort="Yi Li" uniqKey="Yi Li" last="Yi Li">YI LI</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Xian Li" sort="Xian Li" uniqKey="Xian Li" last="Xian Li">XIAN LI</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Yinming Dai" sort="Yinming Dai" uniqKey="Yinming Dai" last="Yinming Dai">YINMING DAI</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author><name sortKey="Qiuliang Wang" sort="Qiuliang Wang" uniqKey="Qiuliang Wang" last="Qiuliang Wang">QIULIANG WANG</name>
<affiliation wicri:level="1"><inist:fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName><settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series><title level="j" type="main">IEEE transactions on applied superconductivity</title>
<title level="j" type="abbreviated">IEEE trans. appl. supercond.</title>
<idno type="ISSN">1051-8223</idno>
<imprint><date when="2012">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt><title level="j" type="main">IEEE transactions on applied superconductivity</title>
<title level="j" type="abbreviated">IEEE trans. appl. supercond.</title>
<idno type="ISSN">1051-8223</idno>
</seriesStmt>
</fileDesc>
<profileDesc><textClass><keywords scheme="KwdEn" xml:lang="en"><term>Algorithm</term>
<term>Bias temperature instability</term>
<term>Current density</term>
<term>Current distribution</term>
<term>Filler</term>
<term>Harmonic</term>
<term>Heterogeneity</term>
<term>Homogeneity</term>
<term>MATLAB software</term>
<term>Magnet</term>
<term>Magnetic field</term>
<term>Mathematical simulation</term>
<term>Nuclear magnetic resonance imaging</term>
<term>Optimization</term>
<term>Solenoid</term>
<term>Superconducting magnet</term>
<term>Superconducting wires</term>
<term>Thermal stress</term>
<term>s parameter</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr"><term>Champ magnétique</term>
<term>Electroaimant supraconducteur</term>
<term>Imagerie RMN</term>
<term>Solénoïde</term>
<term>Fil supraconducteur</term>
<term>Densité courant</term>
<term>Distribution courant</term>
<term>Matière charge</term>
<term>Simulation mathématique</term>
<term>Aimant</term>
<term>Hétérogénéité</term>
<term>Harmonique</term>
<term>Homogénéité</term>
<term>Paramètre s</term>
<term>Optimisation</term>
<term>Algorithme</term>
<term>Logiciel MATLAB</term>
<term>Contrainte thermique</term>
<term>Instabilité thermique de la polarisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front><div type="abstract" xml:lang="en">Currently, when calculating the magnetic field generated by the solenoid coil of the superconducting wire wound, we assume that the coil cross section with a uniform current density, but actual current in superconducting wires (NbTi) in the form of a wire in channel is not evenly distributed, the current distribution only in the superconducting core, i.e., there is no current in copper, insulation, and filler, and this method of calculation will result in errors. In this paper, we model the superconducting cores of the 1.5-T superconducting magnetic resonance imaging (MRI) magnet to calculate accurate magnetic field intensity and inhomogeneity by helicoidal method in the diameter of spherical volume and find that inhomogeneity is eight times bigger than that calculated by spherical harmonic expansions, which cannot be accepted in design. Hence, in order to design a high-homogeneity MRI magnet, we amend the 1.5-T MRI magnet's original parameters by an optimization algorithm through an original interface between OPERA-3D and MATLAB according to the accurate results.</div>
</front>
</TEI>
<inist><standard h6="B"><pA><fA01 i1="01" i2="1"><s0>1051-8223</s0>
</fA01>
<fA03 i2="1"><s0>IEEE trans. appl. supercond.</s0>
</fA03>
<fA05><s2>22</s2>
</fA05>
<fA06><s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG"><s1>The Application of Accurate Calculation of Magnetic Field Intensity in 1.5-T Superconducting MRI Magnet Design</s1>
</fA08>
<fA11 i1="01" i2="1"><s1>ZHONGKUI FENG</s1>
</fA11>
<fA11 i1="02" i2="1"><s1>LANKAI LI</s1>
</fA11>
<fA11 i1="03" i2="1"><s1>CHUNJIE GAO</s1>
</fA11>
<fA11 i1="04" i2="1"><s1>GUANG ZHU</s1>
</fA11>
<fA11 i1="05" i2="1"><s1>YI LI</s1>
</fA11>
<fA11 i1="06" i2="1"><s1>XIAN LI</s1>
</fA11>
<fA11 i1="07" i2="1"><s1>YINMING DAI</s1>
</fA11>
<fA11 i1="08" i2="1"><s1>QIULIANG WANG</s1>
</fA11>
<fA14 i1="01"><s1>Institute of Electrical Engineering, Chinese Academy of Sciences</s1>
<s2>Beijing 100190</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20><s2>4402206.1-4402206.6</s2>
</fA20>
<fA21><s1>2012</s1>
</fA21>
<fA23 i1="01"><s0>ENG</s0>
</fA23>
<fA43 i1="01"><s1>INIST</s1>
<s2>22424</s2>
<s5>354000506367790030</s5>
</fA43>
<fA44><s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45><s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1"><s0>13-0098987</s0>
</fA47>
<fA60><s1>P</s1>
</fA60>
<fA61><s0>A</s0>
</fA61>
<fA64 i1="01" i2="1"><s0>IEEE transactions on applied superconductivity</s0>
</fA64>
<fA66 i1="01"><s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG"><s0>Currently, when calculating the magnetic field generated by the solenoid coil of the superconducting wire wound, we assume that the coil cross section with a uniform current density, but actual current in superconducting wires (NbTi) in the form of a wire in channel is not evenly distributed, the current distribution only in the superconducting core, i.e., there is no current in copper, insulation, and filler, and this method of calculation will result in errors. In this paper, we model the superconducting cores of the 1.5-T superconducting magnetic resonance imaging (MRI) magnet to calculate accurate magnetic field intensity and inhomogeneity by helicoidal method in the diameter of spherical volume and find that inhomogeneity is eight times bigger than that calculated by spherical harmonic expansions, which cannot be accepted in design. Hence, in order to design a high-homogeneity MRI magnet, we amend the 1.5-T MRI magnet's original parameters by an optimization algorithm through an original interface between OPERA-3D and MATLAB according to the accurate results.</s0>
</fC01>
<fC02 i1="01" i2="X"><s0>001D05G01</s0>
</fC02>
<fC02 i1="02" i2="X"><s0>001D03F11</s0>
</fC02>
<fC02 i1="03" i2="X"><s0>001D05C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE"><s0>Champ magnétique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG"><s0>Magnetic field</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA"><s0>Campo magnético</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE"><s0>Electroaimant supraconducteur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG"><s0>Superconducting magnet</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA"><s0>Electroimán supraconductor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE"><s0>Imagerie RMN</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG"><s0>Nuclear magnetic resonance imaging</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA"><s0>Imaginería RMN</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE"><s0>Solénoïde</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG"><s0>Solenoid</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA"><s0>Solenoide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE"><s0>Fil supraconducteur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG"><s0>Superconducting wires</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE"><s0>Densité courant</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG"><s0>Current density</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA"><s0>Densidad corriente</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE"><s0>Distribution courant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG"><s0>Current distribution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA"><s0>Distribución corriente</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE"><s0>Matière charge</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG"><s0>Filler</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA"><s0>Materia carga</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE"><s0>Simulation mathématique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG"><s0>Mathematical simulation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA"><s0>Simulación matemática</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE"><s0>Aimant</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG"><s0>Magnet</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA"><s0>Imán</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE"><s0>Hétérogénéité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG"><s0>Heterogeneity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA"><s0>Heterogeneidad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE"><s0>Harmonique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG"><s0>Harmonic</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA"><s0>Armónica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE"><s0>Homogénéité</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG"><s0>Homogeneity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA"><s0>Homogeneidad</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE"><s0>Paramètre s</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG"><s0>s parameter</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA"><s0>Parámetro s</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE"><s0>Optimisation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG"><s0>Optimization</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA"><s0>Optimización</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE"><s0>Algorithme</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG"><s0>Algorithm</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA"><s0>Algoritmo</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE"><s0>Logiciel MATLAB</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG"><s0>MATLAB software</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA"><s0>Programa MATLAB</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE"><s0>Contrainte thermique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG"><s0>Thermal stress</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA"><s0>Tensión térmica</s0>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE"><s0>Instabilité thermique de la polarisation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG"><s0>Bias temperature instability</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21><s1>070</s1>
</fN21>
<fN44 i1="01"><s1>OTO</s1>
</fN44>
<fN82><s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations><list><country><li>République populaire de Chine</li>
</country>
<settlement><li>Pékin</li>
</settlement>
</list>
<tree><country name="République populaire de Chine"><noRegion><name sortKey="Zhongkui Feng" sort="Zhongkui Feng" uniqKey="Zhongkui Feng" last="Zhongkui Feng">ZHONGKUI FENG</name>
</noRegion>
<name sortKey="Chunjie Gao" sort="Chunjie Gao" uniqKey="Chunjie Gao" last="Chunjie Gao">CHUNJIE GAO</name>
<name sortKey="Guang Zhu" sort="Guang Zhu" uniqKey="Guang Zhu" last="Guang Zhu">GUANG ZHU</name>
<name sortKey="Lankai Li" sort="Lankai Li" uniqKey="Lankai Li" last="Lankai Li">LANKAI LI</name>
<name sortKey="Qiuliang Wang" sort="Qiuliang Wang" uniqKey="Qiuliang Wang" last="Qiuliang Wang">QIULIANG WANG</name>
<name sortKey="Xian Li" sort="Xian Li" uniqKey="Xian Li" last="Xian Li">XIAN LI</name>
<name sortKey="Yi Li" sort="Yi Li" uniqKey="Yi Li" last="Yi Li">YI LI</name>
<name sortKey="Yinming Dai" sort="Yinming Dai" uniqKey="Yinming Dai" last="Yinming Dai">YINMING DAI</name>
</country>
</tree>
</affiliations>
</record>
Pour manipuler ce document sous Unix (Dilib)
EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000051 | SxmlIndent | more
Ou
HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000051 | SxmlIndent | more
Pour mettre un lien sur cette page dans le réseau Wicri
{{Explor lien |wiki= Wicri/Musique |area= OperaV1 |flux= PascalFrancis |étape= Checkpoint |type= RBID |clé= Pascal:13-0098987 |texte= The Application of Accurate Calculation of Magnetic Field Intensity in 1.5-T Superconducting MRI Magnet Design }}
![]() | This area was generated with Dilib version V0.6.21. | ![]() |