Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Artificial neural network based identification of environmental bacteria by gas-chromatographic and electrophoretic data.

Identifieur interne : 002405 ( Main/Exploration ); précédent : 002404; suivant : 002406

Artificial neural network based identification of environmental bacteria by gas-chromatographic and electrophoretic data.

Auteurs : M. Giacomini [Italie] ; C. Ruggiero ; L. Calegari ; S. Bertone

Source :

RBID : pubmed:11084227

Mots-clés :

Abstract

Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, for which poor diagnostic schemes are available. Whole cellular fatty acid methyl esters (FAME) content is a stable bacterial profile, the analysis method is rapid, cheap, simple to perform and highly automated. Whole-cell protein is an even more powerful tool because it yields information at or below the species level. The description of new species and genera and subsequent continuous rearrangement provide large amounts of data, resulting in large databases. In order to set up suitable software tools to work on such large databases artificial neural network (ANN) based programs have been used to classify and identify marine bacteria at genus and species levels, starting from the fatty acid profiles and protein profiles respectively. We analysed 50 certified strains belonging to Halomonas, Marinomonas, Marinospirillum, Oceanospirillum and Pseudoalteromonas genera. Both supervised and unsupervised ANNs provide a correct classification of the marine strains analyzed. Moreover, a set of 73 marine fresh isolates were used as an example of identification using ANNs. We propose supervised and unsupervised ANNs as a reliable tool for classification of bacteria by means of their FAME and of whole-protein analyses and as a sound basis for a comprehensive artificial intelligence based system for polyphasic taxonomy.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Artificial neural network based identification of environmental bacteria by gas-chromatographic and electrophoretic data.</title>
<author>
<name sortKey="Giacomini, M" sort="Giacomini, M" uniqKey="Giacomini M" first="M" last="Giacomini">M. Giacomini</name>
<affiliation wicri:level="1">
<nlm:affiliation>DIST, University of Genova, Via Opera Pia 13, 16145, Genova, Italy. giacomin@dist.unige.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>DIST, University of Genova, Via Opera Pia 13, 16145, Genova</wicri:regionArea>
<wicri:noRegion>Genova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ruggiero, C" sort="Ruggiero, C" uniqKey="Ruggiero C" first="C" last="Ruggiero">C. Ruggiero</name>
</author>
<author>
<name sortKey="Calegari, L" sort="Calegari, L" uniqKey="Calegari L" first="L" last="Calegari">L. Calegari</name>
</author>
<author>
<name sortKey="Bertone, S" sort="Bertone, S" uniqKey="Bertone S" first="S" last="Bertone">S. Bertone</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:11084227</idno>
<idno type="pmid">11084227</idno>
<idno type="wicri:Area/PubMed/Corpus">000655</idno>
<idno type="wicri:Area/PubMed/Curation">000655</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000618</idno>
<idno type="wicri:Area/Ncbi/Merge">000050</idno>
<idno type="wicri:Area/Ncbi/Curation">000050</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000050</idno>
<idno type="wicri:doubleKey">0167-7012:2000:Giacomini M:artificial:neural:network</idno>
<idno type="wicri:Area/Main/Merge">002495</idno>
<idno type="wicri:Area/Main/Curation">002405</idno>
<idno type="wicri:Area/Main/Exploration">002405</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Artificial neural network based identification of environmental bacteria by gas-chromatographic and electrophoretic data.</title>
<author>
<name sortKey="Giacomini, M" sort="Giacomini, M" uniqKey="Giacomini M" first="M" last="Giacomini">M. Giacomini</name>
<affiliation wicri:level="1">
<nlm:affiliation>DIST, University of Genova, Via Opera Pia 13, 16145, Genova, Italy. giacomin@dist.unige.it</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>DIST, University of Genova, Via Opera Pia 13, 16145, Genova</wicri:regionArea>
<wicri:noRegion>Genova</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ruggiero, C" sort="Ruggiero, C" uniqKey="Ruggiero C" first="C" last="Ruggiero">C. Ruggiero</name>
</author>
<author>
<name sortKey="Calegari, L" sort="Calegari, L" uniqKey="Calegari L" first="L" last="Calegari">L. Calegari</name>
</author>
<author>
<name sortKey="Bertone, S" sort="Bertone, S" uniqKey="Bertone S" first="S" last="Bertone">S. Bertone</name>
</author>
</analytic>
<series>
<title level="j">Journal of microbiological methods</title>
<idno type="ISSN">0167-7012</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacteria (classification)</term>
<term>Chromatography, Gas</term>
<term>Electrophoresis</term>
<term>Environmental Microbiology</term>
<term>Neural Networks (Computer)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatography, Gas</term>
<term>Electrophoresis</term>
<term>Environmental Microbiology</term>
<term>Neural Networks (Computer)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, for which poor diagnostic schemes are available. Whole cellular fatty acid methyl esters (FAME) content is a stable bacterial profile, the analysis method is rapid, cheap, simple to perform and highly automated. Whole-cell protein is an even more powerful tool because it yields information at or below the species level. The description of new species and genera and subsequent continuous rearrangement provide large amounts of data, resulting in large databases. In order to set up suitable software tools to work on such large databases artificial neural network (ANN) based programs have been used to classify and identify marine bacteria at genus and species levels, starting from the fatty acid profiles and protein profiles respectively. We analysed 50 certified strains belonging to Halomonas, Marinomonas, Marinospirillum, Oceanospirillum and Pseudoalteromonas genera. Both supervised and unsupervised ANNs provide a correct classification of the marine strains analyzed. Moreover, a set of 73 marine fresh isolates were used as an example of identification using ANNs. We propose supervised and unsupervised ANNs as a reliable tool for classification of bacteria by means of their FAME and of whole-protein analyses and as a sound basis for a comprehensive artificial intelligence based system for polyphasic taxonomy.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bertone, S" sort="Bertone, S" uniqKey="Bertone S" first="S" last="Bertone">S. Bertone</name>
<name sortKey="Calegari, L" sort="Calegari, L" uniqKey="Calegari L" first="L" last="Calegari">L. Calegari</name>
<name sortKey="Ruggiero, C" sort="Ruggiero, C" uniqKey="Ruggiero C" first="C" last="Ruggiero">C. Ruggiero</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Giacomini, M" sort="Giacomini, M" uniqKey="Giacomini M" first="M" last="Giacomini">M. Giacomini</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/corpus/OperaV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002405 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11084227
   |texte=   Artificial neural network based identification of environmental bacteria by gas-chromatographic and electrophoretic data.
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Wed Aug 16 22:49:51 2017