Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The matrix-valued hypergeometric equation.

Identifieur interne : 001E00 ( Main/Exploration ); précédent : 001D99; suivant : 001E01

The matrix-valued hypergeometric equation.

Auteurs : Juan A. Tirao [Argentine]

Source :

RBID : pubmed:12824462

Abstract

The hypergeometric differential equation was found by Euler [Euler, L. (1769) Opera Omnia Ser. 1, 11-13] and was extensively studied by Gauss [Gauss, C. F. (1812) Comm. Soc. Reg. Sci. II 3, 123-162], Kummer [Kummer, E. J. (1836) Riene Ang. Math. 15, 39-83; Kummer, E. J. (1836) Riene Ang. Math. 15, 127-172], and Riemann [Riemann, B. (1857) K. Gess. Wiss. 7, 1-24]. The hypergeometric function known also as Gauss' function is the unique solution of the hypergeometric equation analytic at z = 0 and with value 1 at z = 0. This function, because of its remarkable properties, has been used for centuries in the whole subject of special functions. In this article we give a matrix-valued analog of the hypergeometric differential equation and of Gauss' function. One can only speculate that many of the connections that made Gauss' function a vital part of mathematics at the end of the 20th century will be shared by its matrix-valued version, discussed here.


DOI: 10.1073/pnas.1337650100


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The matrix-valued hypergeometric equation.</title>
<author>
<name sortKey="Tirao, Juan A" sort="Tirao, Juan A" uniqKey="Tirao J" first="Juan A" last="Tirao">Juan A. Tirao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Investigación y Estudios de Matemática de Córdoba-Facultad de Matemática, Astronomía, y Física, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina. tirao@mate.uncor.edu</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Centro de Investigación y Estudios de Matemática de Córdoba-Facultad de Matemática, Astronomía, y Física, Universidad Nacional de Córdoba, 5000 Córdoba</wicri:regionArea>
<wicri:noRegion>5000 Córdoba</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12824462</idno>
<idno type="pmid">12824462</idno>
<idno type="doi">10.1073/pnas.1337650100</idno>
<idno type="wicri:Area/PubMed/Corpus">000587</idno>
<idno type="wicri:Area/PubMed/Curation">000587</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000538</idno>
<idno type="wicri:Area/Ncbi/Merge">000157</idno>
<idno type="wicri:Area/Ncbi/Curation">000157</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000157</idno>
<idno type="wicri:doubleKey">0027-8424:2003:Tirao J:the:matrix:valued</idno>
<idno type="wicri:Area/Main/Merge">001E61</idno>
<idno type="wicri:Area/Main/Curation">001E00</idno>
<idno type="wicri:Area/Main/Exploration">001E00</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The matrix-valued hypergeometric equation.</title>
<author>
<name sortKey="Tirao, Juan A" sort="Tirao, Juan A" uniqKey="Tirao J" first="Juan A" last="Tirao">Juan A. Tirao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Investigación y Estudios de Matemática de Córdoba-Facultad de Matemática, Astronomía, y Física, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina. tirao@mate.uncor.edu</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Centro de Investigación y Estudios de Matemática de Córdoba-Facultad de Matemática, Astronomía, y Física, Universidad Nacional de Córdoba, 5000 Córdoba</wicri:regionArea>
<wicri:noRegion>5000 Córdoba</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The hypergeometric differential equation was found by Euler [Euler, L. (1769) Opera Omnia Ser. 1, 11-13] and was extensively studied by Gauss [Gauss, C. F. (1812) Comm. Soc. Reg. Sci. II 3, 123-162], Kummer [Kummer, E. J. (1836) Riene Ang. Math. 15, 39-83; Kummer, E. J. (1836) Riene Ang. Math. 15, 127-172], and Riemann [Riemann, B. (1857) K. Gess. Wiss. 7, 1-24]. The hypergeometric function known also as Gauss' function is the unique solution of the hypergeometric equation analytic at z = 0 and with value 1 at z = 0. This function, because of its remarkable properties, has been used for centuries in the whole subject of special functions. In this article we give a matrix-valued analog of the hypergeometric differential equation and of Gauss' function. One can only speculate that many of the connections that made Gauss' function a vital part of mathematics at the end of the 20th century will be shared by its matrix-valued version, discussed here.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Argentine</li>
</country>
</list>
<tree>
<country name="Argentine">
<noRegion>
<name sortKey="Tirao, Juan A" sort="Tirao, Juan A" uniqKey="Tirao J" first="Juan A" last="Tirao">Juan A. Tirao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/corpus/OperaV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E00 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12824462
   |texte=   The matrix-valued hypergeometric equation.
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Wed Aug 16 22:49:51 2017