Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimal timing of switches between product sales for sports and entertainment tickets

Identifieur interne : 001455 ( Main/Exploration ); précédent : 001454; suivant : 001456

Optimal timing of switches between product sales for sports and entertainment tickets

Auteurs : Matthew J. Drake [États-Unis] ; Serhan Duran [Turquie] ; Paul M. Griffin [États-Unis] ; Julie L. Swann [États-Unis]

Source :

RBID : ISTEX:F15901BE8F1C2F64AF0A103C62F00AC3D0F2535A

English descriptors

Abstract

Like airlines and hotels, sports teams and entertainment venues can benefit from revenue management efforts for their ticket sales. Teams and entertainment venues usually offer bundles of tickets early in their selling horizon and put single‐event tickets on sale at a later date; these organizations must determine the best time to offer individual tickets because both types of ticket sales consume the same fixed inventory. We model the optimal a priori timing decision for a seller with a fixed number of identical tickets to switch from selling the tickets as fixed bundles to individual tickets to maximize the revenue realized before the start of the performance season. We assume that bundle and single‐ticket customers each arrive according to independent, nonhomogeneous Markovian death processes with a linear death rate that can vary over time and that the benefit from selling a ticket in a package is higher than from selling the ticket individually. We characterize the circumstances in which it is optimal for the seller to practice mixed bundling and when the seller should only sell bundles or individual tickets, and we establish comparative statics for the optimal timing decision for the special case of constant customer arrival rates. We extend our analytical results to find the optimal time for offering two groups of tickets with high and low demand. Finally, we apply the timing model to a data set obtained from the sports industry. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008

Url:
DOI: 10.1002/nav.20266


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimal timing of switches between product sales for sports and entertainment tickets</title>
<author>
<name sortKey="Drake, Matthew J" sort="Drake, Matthew J" uniqKey="Drake M" first="Matthew J." last="Drake">Matthew J. Drake</name>
</author>
<author>
<name sortKey="Duran, Serhan" sort="Duran, Serhan" uniqKey="Duran S" first="Serhan" last="Duran">Serhan Duran</name>
</author>
<author>
<name sortKey="Griffin, Paul M" sort="Griffin, Paul M" uniqKey="Griffin P" first="Paul M." last="Griffin">Paul M. Griffin</name>
</author>
<author>
<name sortKey="Swann, Julie L" sort="Swann, Julie L" uniqKey="Swann J" first="Julie L." last="Swann">Julie L. Swann</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F15901BE8F1C2F64AF0A103C62F00AC3D0F2535A</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1002/nav.20266</idno>
<idno type="url">https://api.istex.fr/document/F15901BE8F1C2F64AF0A103C62F00AC3D0F2535A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E10</idno>
<idno type="wicri:Area/Istex/Curation">000E10</idno>
<idno type="wicri:Area/Istex/Checkpoint">000475</idno>
<idno type="wicri:doubleKey">0894-069X:2008:Drake M:optimal:timing:of</idno>
<idno type="wicri:Area/Main/Merge">001475</idno>
<idno type="wicri:Area/Main/Curation">001455</idno>
<idno type="wicri:Area/Main/Exploration">001455</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Optimal timing of switches between product sales for sports and entertainment tickets</title>
<author>
<name sortKey="Drake, Matthew J" sort="Drake, Matthew J" uniqKey="Drake M" first="Matthew J." last="Drake">Matthew J. Drake</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Palumbo and Donahue Schools of Business, Duquesne University, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Duran, Serhan" sort="Duran, Serhan" uniqKey="Duran S" first="Serhan" last="Duran">Serhan Duran</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Turquie</country>
<wicri:regionArea>Department of Industrial Engineering, Middle East Technical University, Ankara</wicri:regionArea>
<wicri:noRegion>Ankara</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Griffin, Paul M" sort="Griffin, Paul M" uniqKey="Griffin P" first="Paul M." last="Griffin">Paul M. Griffin</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Swann, Julie L" sort="Swann, Julie L" uniqKey="Swann J" first="Julie L." last="Swann">Julie L. Swann</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
<wicri:cityArea>H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Naval Research Logistics (NRL)</title>
<title level="j" type="abbrev">Naval Research Logistics</title>
<idno type="ISSN">0894-069X</idno>
<idno type="eISSN">1520-6750</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2008-02">2008-02</date>
<biblScope unit="volume">55</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="59">59</biblScope>
<biblScope unit="page" to="75">75</biblScope>
</imprint>
<idno type="ISSN">0894-069X</idno>
</series>
<idno type="istex">F15901BE8F1C2F64AF0A103C62F00AC3D0F2535A</idno>
<idno type="DOI">10.1002/nav.20266</idno>
<idno type="ArticleID">NAV20266</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0894-069X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Markov death process</term>
<term>bundling</term>
<term>entertainment</term>
<term>optimal timing</term>
<term>revenue management</term>
<term>sports operations</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Like airlines and hotels, sports teams and entertainment venues can benefit from revenue management efforts for their ticket sales. Teams and entertainment venues usually offer bundles of tickets early in their selling horizon and put single‐event tickets on sale at a later date; these organizations must determine the best time to offer individual tickets because both types of ticket sales consume the same fixed inventory. We model the optimal a priori timing decision for a seller with a fixed number of identical tickets to switch from selling the tickets as fixed bundles to individual tickets to maximize the revenue realized before the start of the performance season. We assume that bundle and single‐ticket customers each arrive according to independent, nonhomogeneous Markovian death processes with a linear death rate that can vary over time and that the benefit from selling a ticket in a package is higher than from selling the ticket individually. We characterize the circumstances in which it is optimal for the seller to practice mixed bundling and when the seller should only sell bundles or individual tickets, and we establish comparative statics for the optimal timing decision for the special case of constant customer arrival rates. We extend our analytical results to find the optimal time for offering two groups of tickets with high and low demand. Finally, we apply the timing model to a data set obtained from the sports industry. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Turquie</li>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Drake, Matthew J" sort="Drake, Matthew J" uniqKey="Drake M" first="Matthew J." last="Drake">Matthew J. Drake</name>
</region>
<name sortKey="Griffin, Paul M" sort="Griffin, Paul M" uniqKey="Griffin P" first="Paul M." last="Griffin">Paul M. Griffin</name>
<name sortKey="Swann, Julie L" sort="Swann, Julie L" uniqKey="Swann J" first="Julie L." last="Swann">Julie L. Swann</name>
</country>
<country name="Turquie">
<noRegion>
<name sortKey="Duran, Serhan" sort="Duran, Serhan" uniqKey="Duran S" first="Serhan" last="Duran">Serhan Duran</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001455 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001455 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:F15901BE8F1C2F64AF0A103C62F00AC3D0F2535A
   |texte=   Optimal timing of switches between product sales for sports and entertainment tickets
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020