Stochastic analysis of interconnect performance in the presence of process variations
Identifieur interne : 001D34 ( Main/Curation ); précédent : 001D33; suivant : 001D35Stochastic analysis of interconnect performance in the presence of process variations
Auteurs : Janet Wang [États-Unis] ; Praveen Ghanta [États-Unis] ; Sarma Vrudhula [États-Unis]Source :
Descripteurs français
- Pascal (Inist)
- Conception assistée, Conception circuit, Processus stochastique, Analyse stochastique, Evaluation performance, Système temporisé, Effet retard, Appel procédure, Analyse statistique, Modélisation, Méthode stochastique, Approche probabiliste, Espace Hilbert, Polynôme orthogonal, Méthode Galerkin, Variable aléatoire, Méthode Monte Carlo, Méthode perturbation.
English descriptors
- KwdEn :
- Circuit design, Computer aided design, Delay effect, Galerkin method, Hilbert space, Modeling, Monte Carlo method, Orthogonal polynomial, Performance evaluation, Perturbation method, Probabilistic approach, Procedure call, Random variable, Statistical analysis, Stochastic analysis, Stochastic method, Stochastic process, Timed system.
Abstract
Deformations in interconnect due to process variations can lead to significant performance degradation in deep sub-micron circuits. Timing analyzers attempt to capture the effects of variation on delay with simplified models. The timing verification of RC or RLC networks requires the substitution of such simplified models with spatial stochastic processes that capture the random nature of process variations. The present work proposes a new and viable method to compute the stochastic response of interconnects. The technique models the stochastic response in an infinite dimensional Hilbert space in terms of orthogonal polynomial expansions. A finite representation is obtained by using the Galerkin approach of minimizing the Hilbert space norm of the residual error. The key advance of the proposed method is that it provides a functional representation of the response of the system in terms of the random variables that represent the process variations. The proposed algorithm has been implemented in a procedure called OPERA. Results from OPERA simulations on commercial design test cases match well with those from the classical Monte Carlo SPICE simulations and from perturbation methods. Additionally OPERA shows good computational efficiency: speedup factor of 60 has been observed over Monte Carlo SPICE simulations.
Links toward previous steps (curation, corpus...)
- to stream PascalFrancis, to step Corpus: Pour aller vers cette notice dans l'étape Curation :000375
- to stream PascalFrancis, to step Curation: Pour aller vers cette notice dans l'étape Curation :000217
- to stream PascalFrancis, to step Checkpoint: Pour aller vers cette notice dans l'étape Curation :000388
- to stream Main, to step Merge: Pour aller vers cette notice dans l'étape Curation :001D89
Links to Exploration step
Pascal:06-0156613Le document en format XML
<record><TEI><teiHeader><fileDesc><titleStmt><title xml:lang="en" level="a">Stochastic analysis of interconnect performance in the presence of process variations</title>
<author><name sortKey="Wang, Janet" sort="Wang, Janet" uniqKey="Wang J" first="Janet" last="Wang">Janet Wang</name>
<affiliation wicri:level="2"><inist:fA14 i1="01"><s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName><region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author><name sortKey="Ghanta, Praveen" sort="Ghanta, Praveen" uniqKey="Ghanta P" first="Praveen" last="Ghanta">Praveen Ghanta</name>
<affiliation wicri:level="2"><inist:fA14 i1="01"><s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName><region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author><name sortKey="Vrudhula, Sarma" sort="Vrudhula, Sarma" uniqKey="Vrudhula S" first="Sarma" last="Vrudhula">Sarma Vrudhula</name>
<affiliation wicri:level="2"><inist:fA14 i1="01"><s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName><region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt><idno type="wicri:source">INIST</idno>
<idno type="inist">06-0156613</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 06-0156613 INIST</idno>
<idno type="RBID">Pascal:06-0156613</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000375</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000217</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000388</idno>
<idno type="wicri:Area/Main/Merge">001D89</idno>
<idno type="wicri:Area/Main/Curation">001D34</idno>
</publicationStmt>
<sourceDesc><biblStruct><analytic><title xml:lang="en" level="a">Stochastic analysis of interconnect performance in the presence of process variations</title>
<author><name sortKey="Wang, Janet" sort="Wang, Janet" uniqKey="Wang J" first="Janet" last="Wang">Janet Wang</name>
<affiliation wicri:level="2"><inist:fA14 i1="01"><s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName><region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author><name sortKey="Ghanta, Praveen" sort="Ghanta, Praveen" uniqKey="Ghanta P" first="Praveen" last="Ghanta">Praveen Ghanta</name>
<affiliation wicri:level="2"><inist:fA14 i1="01"><s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName><region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author><name sortKey="Vrudhula, Sarma" sort="Vrudhula, Sarma" uniqKey="Vrudhula S" first="Sarma" last="Vrudhula">Sarma Vrudhula</name>
<affiliation wicri:level="2"><inist:fA14 i1="01"><s1>ECE Dept., Univ. of Arizona</s1>
<s2>Tucson, Arizona</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName><region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
</analytic>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc><textClass><keywords scheme="KwdEn" xml:lang="en"><term>Circuit design</term>
<term>Computer aided design</term>
<term>Delay effect</term>
<term>Galerkin method</term>
<term>Hilbert space</term>
<term>Modeling</term>
<term>Monte Carlo method</term>
<term>Orthogonal polynomial</term>
<term>Performance evaluation</term>
<term>Perturbation method</term>
<term>Probabilistic approach</term>
<term>Procedure call</term>
<term>Random variable</term>
<term>Statistical analysis</term>
<term>Stochastic analysis</term>
<term>Stochastic method</term>
<term>Stochastic process</term>
<term>Timed system</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr"><term>Conception assistée</term>
<term>Conception circuit</term>
<term>Processus stochastique</term>
<term>Analyse stochastique</term>
<term>Evaluation performance</term>
<term>Système temporisé</term>
<term>Effet retard</term>
<term>Appel procédure</term>
<term>Analyse statistique</term>
<term>Modélisation</term>
<term>Méthode stochastique</term>
<term>Approche probabiliste</term>
<term>Espace Hilbert</term>
<term>Polynôme orthogonal</term>
<term>Méthode Galerkin</term>
<term>Variable aléatoire</term>
<term>Méthode Monte Carlo</term>
<term>Méthode perturbation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front><div type="abstract" xml:lang="en">Deformations in interconnect due to process variations can lead to significant performance degradation in deep sub-micron circuits. Timing analyzers attempt to capture the effects of variation on delay with simplified models. The timing verification of RC or RLC networks requires the substitution of such simplified models with spatial stochastic processes that capture the random nature of process variations. The present work proposes a new and viable method to compute the stochastic response of interconnects. The technique models the stochastic response in an infinite dimensional Hilbert space in terms of orthogonal polynomial expansions. A finite representation is obtained by using the Galerkin approach of minimizing the Hilbert space norm of the residual error. The key advance of the proposed method is that it provides a functional representation of the response of the system in terms of the random variables that represent the process variations. The proposed algorithm has been implemented in a procedure called OPERA. Results from OPERA simulations on commercial design test cases match well with those from the classical Monte Carlo SPICE simulations and from perturbation methods. Additionally OPERA shows good computational efficiency: speedup factor of 60 has been observed over Monte Carlo SPICE simulations.</div>
</front>
</TEI>
</record>
Pour manipuler ce document sous Unix (Dilib)
EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D34 | SxmlIndent | more
Ou
HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001D34 | SxmlIndent | more
Pour mettre un lien sur cette page dans le réseau Wicri
{{Explor lien |wiki= Wicri/Musique |area= OperaV1 |flux= Main |étape= Curation |type= RBID |clé= Pascal:06-0156613 |texte= Stochastic analysis of interconnect performance in the presence of process variations }}
![]() | This area was generated with Dilib version V0.6.21. | ![]() |