Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inconsistency in super-luminal CERNOPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass

Identifieur interne : 000002 ( Istex/Corpus ); précédent : 000001; suivant : 000003

Inconsistency in super-luminal CERNOPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass

Auteurs : Daniele Fargion ; Daniele D'Armiento

Source :

RBID : ISTEX:73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14

Abstract

We tried to fit in any way the recent OPERACERN claims of a neutrino super-luminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMBKamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERNOPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic e component and a super-luminal ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between e and , ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERACERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond gravitonneutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.

Url:
DOI: 10.1088/0954-3899/39/8/085002

Links to Exploration step

ISTEX:73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Inconsistency in super-luminal CERNOPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
<author>
<name sortKey="Fargion, Daniele" sort="Fargion, Daniele" uniqKey="Fargion D" first="Daniele" last="Fargion">Daniele Fargion</name>
<affiliation>
<mods:affiliation>Physics Department, Rome University 1, Sapienza and INFN, Roma1 Pl A Moro 2, 00185 Rome, Italy</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: daniele.fargion@roma1.infn.it</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="D Armiento, Daniele" sort="D Armiento, Daniele" uniqKey="D Armiento D" first="Daniele" last="D'Armiento">Daniele D'Armiento</name>
<affiliation>
<mods:affiliation>Physics Department, Rome University 1, Sapienza and INFN, Roma1 Pl A Moro 2, 00185 Rome, Italy</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1088/0954-3899/39/8/085002</idno>
<idno type="url">https://api.istex.fr/document/73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000002</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Inconsistency in super-luminal CERNOPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
<author>
<name sortKey="Fargion, Daniele" sort="Fargion, Daniele" uniqKey="Fargion D" first="Daniele" last="Fargion">Daniele Fargion</name>
<affiliation>
<mods:affiliation>Physics Department, Rome University 1, Sapienza and INFN, Roma1 Pl A Moro 2, 00185 Rome, Italy</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: daniele.fargion@roma1.infn.it</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="D Armiento, Daniele" sort="D Armiento, Daniele" uniqKey="D Armiento D" first="Daniele" last="D'Armiento">Daniele D'Armiento</name>
<affiliation>
<mods:affiliation>Physics Department, Rome University 1, Sapienza and INFN, Roma1 Pl A Moro 2, 00185 Rome, Italy</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Physics G Nuclear and Particle Physics</title>
<idno type="ISSN">0954-3899</idno>
<idno type="eISSN">1361-6471</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2012-08">2012-08</date>
<biblScope unit="volume">39</biblScope>
<biblScope unit="issue">8</biblScope>
</imprint>
<idno type="ISSN">0954-3899</idno>
</series>
<idno type="istex">73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14</idno>
<idno type="DOI">10.1088/0954-3899/39/8/085002</idno>
<idno type="href">http://stacks.iop.org/JPhysG/39/085002</idno>
<idno type="ArticleID">jpg410574</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0954-3899</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We tried to fit in any way the recent OPERACERN claims of a neutrino super-luminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMBKamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERNOPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic e component and a super-luminal ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between e and , ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERACERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond gravitonneutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.</div>
</front>
</TEI>
<istex>
<corpusName>iop</corpusName>
<author>
<json:item>
<name>Daniele Fargion</name>
<affiliations>
<json:string>Physics Department, Rome University 1, Sapienza and INFN, Roma1 Pl A Moro 2, 00185 Rome, Italy</json:string>
<json:string>E-mail: daniele.fargion@roma1.infn.it</json:string>
</affiliations>
</json:item>
<json:item>
<name>Daniele D'Armiento</name>
<affiliations>
<json:string>Physics Department, Rome University 1, Sapienza and INFN, Roma1 Pl A Moro 2, 00185 Rome, Italy</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Particle physics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>14.60.Pq</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>13.15.g</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>13.35.Bv</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>13.85.Tp</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>neutrino</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>super-luminal</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>flavor mixing</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<abstract>We tried to fit in any way the recent OPERACERN claims of a neutrino super-luminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMBKamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERNOPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic e component and a super-luminal ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between e and , ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERACERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond gravitonneutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.</abstract>
<qualityIndicators>
<score>6.73</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>8</keywordCount>
<abstractCharCount>1293</abstractCharCount>
<pdfWordCount>3878</pdfWordCount>
<pdfCharCount>22699</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>196</abstractWordCount>
</qualityIndicators>
<title>Inconsistency in super-luminal CERNOPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<volume>39</volume>
<issn>
<json:string>0954-3899</json:string>
</issn>
<issue>8</issue>
<genre></genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1361-6471</json:string>
</eissn>
<title>Journal of Physics G Nuclear and Particle Physics</title>
</host>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1088/0954-3899/39/8/085002</json:string>
</doi>
<id>73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Inconsistency in super-luminal CERNOPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>IOP Publishing</publisher>
<availability>
<p>IOP</p>
</availability>
<date>2012-06-12</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Inconsistency in super-luminal CERNOPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
<author>
<persName>
<forename type="first">Daniele</forename>
<surname>Fargion</surname>
</persName>
<email>daniele.fargion@roma1.infn.it</email>
<affiliation>Physics Department, Rome University 1, Sapienza and INFN, Roma1 Pl A Moro 2, 00185 Rome, Italy</affiliation>
</author>
<author>
<persName>
<forename type="first">Daniele</forename>
<surname>D'Armiento</surname>
</persName>
<affiliation>Physics Department, Rome University 1, Sapienza and INFN, Roma1 Pl A Moro 2, 00185 Rome, Italy</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Journal of Physics G Nuclear and Particle Physics</title>
<idno type="pISSN">0954-3899</idno>
<idno type="eISSN">1361-6471</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2012-08"></date>
<biblScope unit="volume">39</biblScope>
<biblScope unit="issue">8</biblScope>
</imprint>
</monogr>
<idno type="istex">73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14</idno>
<idno type="DOI">10.1088/0954-3899/39/8/085002</idno>
<idno type="href">http://stacks.iop.org/JPhysG/39/085002</idno>
<idno type="ArticleID">jpg410574</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2012-06-12</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>We tried to fit in any way the recent OPERACERN claims of a neutrino super-luminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMBKamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERNOPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic e component and a super-luminal ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between e and , ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERACERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond gravitonneutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>article-type</head>
<item>
<term>Paper</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="keyword">
<list>
<head>section</head>
<item>
<term>Particle physics</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="keyword">
<list>
<head>author-pacs</head>
<item>
<term>14.60.Pq</term>
</item>
<item>
<term>13.15.g</term>
</item>
<item>
<term>13.35.Bv</term>
</item>
<item>
<term>13.85.Tp</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>neutrino</term>
</item>
<item>
<term>super-luminal</term>
</item>
<item>
<term>flavor mixing</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2012-06-12">Created</change>
<change when="2012-08">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus iop not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="ISO-8859-1" </istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v3.0 20080202//EN" URI="http://ej.iop.org/dtd/nlm-3.0/journalpublishing3.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">jpg</journal-id>
<journal-id journal-id-type="coden">JPGPED</journal-id>
<journal-title-group>
<journal-title>Journal of Physics G: Nuclear and Particle Physics</journal-title>
<abbrev-journal-title abbrev-type="IOP">JPhysG</abbrev-journal-title>
<abbrev-journal-title abbrev-type="publisher">J. Phys. G: Nucl. Part. Phys.</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0954-3899</issn>
<issn pub-type="epub">1361-6471</issn>
<publisher>
<publisher-name>IOP Publishing</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">jpg410574</article-id>
<article-id pub-id-type="doi">10.1088/0954-3899/39/8/085002</article-id>
<article-id pub-id-type="manuscript">410574</article-id>
<article-categories>
<subj-group subj-group-type="article-type">
<subject>Paper</subject>
</subj-group>
<subj-group subj-group-type="section">
<subject>Particle physics</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Inconsistency in super-luminal CERN–OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</article-title>
<alt-title alt-title-type="ascii">Inconsistency in super-luminal CERN--OPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</alt-title>
<alt-title alt-title-type="short">Inconsistency of super-luminal CERN–OPERA neutrino speed</alt-title>
<alt-title alt-title-type="short-ascii">Inconsistency of super-luminal CERN--OPERA neutrino speed</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Fargion</surname>
<given-names>Daniele</given-names>
</name>
<xref ref-type="aff" rid="jpg410574af1"></xref>
<xref ref-type="aff" rid="jpg410574em1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>D'Armiento</surname>
<given-names>Daniele</given-names>
</name>
<xref ref-type="aff" rid="jpg410574af1"></xref>
</contrib>
<aff id="jpg410574af1">Physics Department,
<institution>Rome University 1</institution>
, Sapienza and INFN, Roma1 –Pl A Moro 2, 00185 Rome,
<country>Italy</country>
</aff>
<ext-link ext-link-type="email" id="jpg410574em1">daniele.fargion@roma1.infn.it</ext-link>
<author-comment content-type="short-author-list">
<p>D Fargion and D D'Armiento</p>
</author-comment>
</contrib-group>
<pub-date pub-type="ppub">
<month>8</month>
<year>2012</year>
</pub-date>
<pub-date pub-type="epub">
<day>12</day>
<month>6</month>
<year>2012</year>
</pub-date>
<volume>39</volume>
<issue>8</issue>
<elocation-id content-type="artnum">085002</elocation-id>
<supplementary-material content-type="colour-figures"></supplementary-material>
<history>
<date date-type="received">
<day>25</day>
<month>9</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement>© 2012 IOP Publishing Ltd</copyright-statement>
<copyright-year>2012</copyright-year>
</permissions>
<self-uri xlink:href="http://stacks.iop.org/JPhysG/39/085002"></self-uri>
<abstract>
<title>Abstract</title>
<p>We tried to fit in any way the recent OPERA–CERN claims of a neutrino super-luminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMB–Kamiokande SN1987A burst by thousands of billion times longer. (2) An
<italic>ad hoc</italic>
anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERN–OPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic ν
<sub>
<italic>e</italic>
</sub>
component and a super-luminal ν
<sub>μ</sub>
) in an
<italic>ad hoc</italic>
frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between ν
<sub>
<italic>e</italic>
</sub>
and ν
<sub>μ</sub>
, ν
<sub>τ</sub>
) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERA–CERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond graviton–neutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.</p>
</abstract>
<kwd-group kwd-group-type="author-pacs">
<kwd>14.60.Pq</kwd>
<kwd>13.15.+g</kwd>
<kwd>13.35.Bv</kwd>
<kwd>13.85.Tp</kwd>
</kwd-group>
<kwd-group kwd-group-type="author">
<kwd>neutrino</kwd>
<kwd>super-luminal</kwd>
<kwd>flavor mixing</kwd>
</kwd-group>
<counts>
<page-count count="9"></page-count>
</counts>
<custom-meta-group>
<custom-meta>
<meta-name>ccc</meta-name>
<meta-value>0954-3899/12/085002+09$33.00</meta-value>
</custom-meta>
<custom-meta>
<meta-name>printed</meta-name>
<meta-value>Printed in the UK & the USA</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="jpg410574s1">
<label>1.</label>
<title>Introduction: any solution for super-luminal neutrinos?</title>
<p>The first preprint from the CERN–OPERA experiment hints for a muon neutrino faster than light [
<xref ref-type="bibr" rid="jpg410574bib01">1</xref>
], may be tachyon in nature. If all neutrino were just tachyon, their arrival (at SN1987A-17 MeV energy) would be even much much faster than a 17 GeV OPERA neutrino. Indeed, OPERA super-luminal neutrinos (at a speed 2.5 × 10
<sup>−5</sup>
times faster than
<italic>c</italic>
) would lead to the SN1987A speed being nearly 6.95 times faster than
<italic>c</italic>
, therefore coming, back much earlier nearly 134 500 years ago from the Large Magellanic Cloud (LMC), therefore unobservable. On the other hand, had all the neutrino velocity, independent of their energy, been frozen at an OPERA speed 2.5 × 10
<sup>−5</sup>
times faster than
<italic>c</italic>
, then SN1987A would not have been observed (as is well known to be) on 23 February 1987. Indeed, such a superluminal electron neutrino would have reached us 3.72 years before, around the middle of 1983, as a SN1987A precursor whose signals were hidden in the oldest IMB (Irvine–Michigan–Brookhaven) records. However, in such tuned new physics no explanation will be of the same neutrino burst found on 23 February 1987 by IMB–Kamiokande. An
<italic>ad hoc</italic>
anti-tachyon neutrino law (opposite energy relation with respect to the tachyon) may somehow fit the super-luminal result and SN1987A, but it disagrees with the apparent energy independence in the OPERA ν speed. A more accommodating scenario is the one where electron neutrinos (and antineutrino) fly near the velocity
<italic>c</italic>
, while muon neutrinos are super-luminal: then SN1987A ν
<sub>
<italic>e</italic>
</sub>
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn1.gif"></inline-graphic>
</inline-formula>
may be in agreement with the observed signals; nevertheless, even in this ideal scenario one should also find a co-existing precursor neutrino burst signal in the middle of 1983 inside the IMB records (certainly unobserved), a signal due to a partial muon to electron neutrino conversion in flight from SN1987A to the Earth. Moreover, the electron's and muon's different velocities are in obvious conflict with flavor interferences. Any different ν
<sub>
<italic>e</italic>
</sub>
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn2.gif"></inline-graphic>
</inline-formula>
speed with respect to ν
<sub>μ</sub>
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn3.gif"></inline-graphic>
</inline-formula>
would strongly disagree (as shown later) with all the observed oscillations of the last decades. Indeed, any near distance (or short baseline) neutrino flavor mixing (from nuclear power plants, such as the Kamland electron neutrino oscillation records) and any atmospheric neutrino angular distribution (mainly the electronic flavor in super-Kamiokande) should change because of the muon–electron neutrino decoherence (as shown later). Such flavor de-coherence between electron–muon neutrinos would have happened dramatically, even in OPERA and MINOS flux records, in flight. In conclusion, the observed SN1987A neutrino burst and known neutrino mixing strongly constrain an
<italic>ad hoc</italic>
super-luminal neutrino signal. Apparent OPERA anomalous neutrino speed measure might be responsible, we claim, for some misleading time calibrations. Of course, we do not comment here on the long list of puzzles in such violation of special relativity, where one may imagine to sit along the neutrino super-luminal frame seeing an inverted time sequence of events. Surprisingly, a very recent test and a preprint with unique sharp bunches from CERN once again reconfirmed such an unbelievable (but widely applauded) super-luminal result [
<xref ref-type="bibr" rid="jpg410574bib02">2</xref>
]. We did not change our minds. However, last minute rumors of experimental OPERA bugs finally shut down these, let us say, imaginary results [
<xref ref-type="bibr" rid="jpg410574bib09">9</xref>
]. Nevertheless, future supernova gravitational waves, millisecond time precursors (with respect to the neutrino burst due to SN neutronization) from Andromeda, may finally discover neutrino mass splitting, mostly of real guaranteed atmospheric nature.</p>
</sec>
<sec id="jpg410574s2">
<label>2.</label>
<title>Time precursor for an imaginary tachyon</title>
<p>Let us assume, as OPERA–CERN declared, that the time precursor neutrino arrival is δ(
<italic>t</italic>
)
<sub>ν</sub>
= 60 ns. Its fly time for covering 720 km distance is δ(
<italic>t</italic>
)
<sub>CERN–OPERA</sub>
= 2.4 ms. It implies for an energy-independent neutrino speed that a precursor event at
<italic>a</italic>
-dimensional time
<disp-formula id="jpg410574eqn01">
<label>1</label>
<tex-math></tex-math>
<graphic xlink:href="jpg410574eqn01.gif"></graphic>
</disp-formula>
and a consequent
<italic>apparent</italic>
precursor explosion from SN1987A would have occurred 3.72 years before (i.e. on 23 February 1987), the optical SN event reaching from 157 k ly (light year) distances to the LMC, probably around 2 June 1983 (incidentally on Italian Nation Day). But this result does not take into account the needed tachyon neutrino behavior, where the energy is related to an imaginary mass time by a Lorentz factor
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn4.gif"></inline-graphic>
</inline-formula>
. The Lorentz factor
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn5.gif"></inline-graphic>
</inline-formula>
for a super-luminal particle is an imaginary value. Indeed, the higher the energy (OPERA 17 GeV), the slower (nearer to the velocity of light) the speed and the lower the tachyon neutrino energy, the faster the speed. In this case, the SN neutrino is nearly 6.95 times faster than
<italic>c</italic>
:
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn6.gif"></inline-graphic>
</inline-formula>
. The time of arrival for a lower energy (let us say 17 MeV SN1987A) neutrino, with respect to the 17 GeV OPERA tachyon neutrino, from the neutrino SN precursor should be nearly 134 500 years (see figure 
<xref ref-type="fig" rid="jpg410574f1">1</xref>
, right, small circle), assuming an LMC distance of 157 k ly, nearly a thousand billion times the observed SN 1987A neutrino timescale.</p>
<fig id="jpg410574f1">
<label>Figure 1.</label>
<caption id="jpg410574fc1">
<p>Schematic energy–velocity, or better to say, Lorentz factor–velocity behavior for real neutrino (
<italic>v</italic>
<
<italic>c</italic>
) on the left side (atmospheric neutrino mass), tachyon mass (
<italic>v</italic>
>
<italic>c</italic>
) red curve decreasing on the right side, anti-tachyon (
<italic>v</italic>
>
<italic>c</italic>
) blue curve increasing on the right side, that are trying to fit OPERA and the neutrino SN1987A timing simultaneously, correlated with the OPERA–Cern claim. We assume OPERA neutrino at 17 GeV and SN1987A at 17 MeV. The anti-tachyon described in the figure would shrink the timing almost as the observed ones. The anti-tachyon blue curve, with
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn21.gif"></inline-graphic>
</inline-formula>
, requires a SN scale time spread nearly ten times longer than that observed. Assuming a rare
<italic>ad hoc</italic>
anti-tachyon law (
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn22.gif"></inline-graphic>
</inline-formula>
), one might tune energy-arrival dependence for OPERA and SN event, but OPERA energy-speed spread should have shown a (unobserved) strong velocity–energy dependence, nearly a factor 900% for the lower energy with respect to higher energy events.</p>
</caption>
<graphic id="jpg410574f1_eps" content-type="print" xlink:href="jpg410574f1_pr.eps"></graphic>
<graphic id="jpg410574f1_online" content-type="online" xlink:href="jpg410574f1_online.jpg"></graphic>
</fig>
<sec id="jpg410574s2-1">
<label>2.1.</label>
<title>An anti-tachyon to save OPERA and SN1987A ν timing</title>
<p>Let us just try for a while to fit this wrong SN1987A timing, imposing, just for the hypothesis,
<italic>an invented ad hoc tachyon-like relativistic law</italic>
, opposite to the usual one,
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn7.gif"></inline-graphic>
</inline-formula>
, with the same expression for all flavor neutrinos, but whose different masses allow flavor mixing,
<italic>almost</italic>
able to fit the OPERA observation and the SN1987A burst signal. This law may have a minimal physical connection (with respect to the above tachyon law) if one assumes that the new tachyon neutrino effective mass
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn8.gif"></inline-graphic>
</inline-formula>
does depend on its speed in matter as
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn9.gif"></inline-graphic>
</inline-formula>
; one then obtains
<disp-formula id="jpg410574ueq01">
<tex-math></tex-math>
<graphic xlink:href="jpg410574ueq01.gif"></graphic>
</disp-formula>
Therefore, SN neutrinos fly almost at the speed of light. This time spread corresponds nevertheless to a 2 min spread for the supernovae SN1987A neutrino arrival from the LMC, a value barely consistent with Kamiokande records and that of the IMB signal spread: 12 s, just comparable in global time, but not in details (see figure
<xref ref-type="fig" rid="jpg410574f1">1</xref>
, right side, vertical axis). Assuming an even more
<italic>ad hoc</italic>
law (
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn10.gif"></inline-graphic>
</inline-formula>
), one may reconcile the time spread within 12 s. However, both these new
<italic>ad hoc</italic>
tachyon laws strongly disagree with the negligible spread in different energies of the neutrino speed observed in OPERA itself: at a nominal OPERA neutrino energy of 13.9 GeV, the neutrino arrival is 53.1 ns earlier than
<italic>c</italic>
, while at 42.9 GeV, the arrival is a little earlier, 67.1 ns before
<italic>c</italic>
, an observed difference of nearly 21%. In contrast, the
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn11.gif"></inline-graphic>
</inline-formula>
law would require, at those higher energies (scaled by a factor of 3.1 with respect to the lower ones), an earlier arrival of neutrino, 3.1
<sup>2</sup>
earlier, about 477 ns, or at a time difference of above 900% to the lower energy ones. Therefore, the new tachyon law adapted to solve the SN1987A is in conflict with the OPERA almost unvariably with the neutrino speed with the energy. In conclusion, this simplest anti-tachyon toy model has some global fit, but it is extremely unnatural and nevertheless inaccurate and against OPERA neutrino speed at two different energies. The extension to fit also the mixing among flavors is not forbidden but calls for unnatural fine-tuned tachyon mass values. Indeed, the anti-tachyon mass value for the
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn12.gif"></inline-graphic>
</inline-formula>
law in OPERA requires 2.4 TeV energy, requiring a thousand billion times tuned mass splitting to solve the observed flavor neutrino mixing. Therefore, because of all these failures, we try to accommodate OPERA result assuming, as a last attempt, that the behavior of the muon (OPERA) and electron (SN1987A) neutrino velocities are different and hence uncorrelated.</p>
</sec>
</sec>
<sec id="jpg410574s3">
<label>3.</label>
<title>Frozen neutrino speeds: looking back in 1983 IMB records</title>
<p>Let us assume, following the most recent 2011 TAUP Conference and MINOS result, that there are no (few) differences between the observed SN1987A
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn13.gif"></inline-graphic>
</inline-formula>
and the conjugate ν
<sub>
<italic>e</italic>
</sub>
. In other words, let us assume that we do not face any relevant CPT violation. Moreover, let us assume a frozen super-luminal neutrino velocity only for ν
<sub>μ</sub>
,
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn14.gif"></inline-graphic>
</inline-formula>
flavors, not dependent on their energies as the early CERN–OPERA results seem to suggest [
<xref ref-type="bibr" rid="jpg410574bib01">1</xref>
]. In this scenario, if also the electron neutrino shares a frozen speed, as we have already mentioned in the abstract, then there will be no room for any SN neutrino signal in SN1987A: any superluminal neutrino burst of a few seconds would be hidden or lost as a rare neutrino precursor event spread somewhere a few years (3.72 ± 0.5 yr) earlier, within very wide temporal windows. If one really wants SN1987A records to be compatible with the OPERA superluminal neutrino claim, one may require (unnatural) different flavor neutrino speeds for electron versus muon flavors: a scenario where electron neutrinos (and antineutrino) fly nearly at the velocity
<italic>c</italic>
, while the muon neutrinos ν
<sub>μ</sub>
,
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn15.gif"></inline-graphic>
</inline-formula>
(as well as the mixed flavor ν
<sub>τ</sub>
,
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn16.gif"></inline-graphic>
</inline-formula>
in order to guarantee the solid ν
<sub>μ</sub>
ν
<sub>τ</sub>
mixing) are super-luminal. Then, SN1987A ν
<sub>
<italic>e</italic>
</sub>
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn17.gif"></inline-graphic>
</inline-formula>
may be in agreement with the observed signals. Nevertheless, even in this ideal scenario where ν
<sub>
<italic>e</italic>
</sub>
,
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn18.gif"></inline-graphic>
</inline-formula>
reach in time to the SN1987A optical burst, one should expect a co-existing precursor neutrino burst signal in late 1982 or early 1983 (just 3.72 years earlier) inside the IMB records. This is because the θ
<sub>12</sub>
mixing angle couples the electron and muon flavors. Kamiokande came into existence in late 1983 and cannot be searched. The presence of the SN1987A neutrino burst precursor should be more apparent in the IMB detector because thermal SN1987A muon neutrinos will fly faster, but their superluminal tachyon mass eigenstates should also oscillate with luminal mass terms reaching the Earth as electron neutrino flavors. The same applies for the tau neutrinos which may coexist with muon ones, leading to a signal 3.72 years earlier. To find such a ≃ 8 neutrino event (or even ≃ 16 because of eventual thermal tau neutrino conversion into electron ones), a cluster in IMB, will be, in our eyes, the real surprising revolution offered by OPERA. However, any large difference in the ν
<sub>
<italic>e</italic>
</sub>
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn19.gif"></inline-graphic>
</inline-formula>
speed with respect to ν
<sub>μ</sub>
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn20.gif"></inline-graphic>
</inline-formula>
also strongly disagrees with the other observed signals at low (MeV) and high (GeV) energy neutrino flavor mixing, mostly the Kamland results, see figure
<xref ref-type="fig" rid="jpg410574f3">3</xref>
, as well as the correlated atmospheric electron and muon neutrino angular spectra, see figure
<xref ref-type="fig" rid="jpg410574f2">2</xref>
. In such a model one would expect not only a muon neutrino anomaly in an up-going vertical muon, but also a more dramatic upward and downward electron neutrino suppression, due to the flavor de-coherence to be discussed below, an effect that was never observed. In conclusion, SN1987A and known neutrino flavor mixing strongly disagree with any
<italic>ad hoc</italic>
super-luminal neutrino model or with the present frozen muon neutrino super-luminal behavior.</p>
<fig id="jpg410574f2">
<label>Figure 2.</label>
<caption id="jpg410574fc2">
<p>Our simulation of the expected zenith angle (cos θ) event count distribution for electron–muon ν mixing in the atmospheric ν
<sub>
<italic>e</italic>
</sub>
signals is shown in the top panel, while ν
<sub>μ</sub>
signals are shown in the bottom panel, within a muon neutrino super-luminal scenario, where the muon and electron ν are separated due to speed and fast de-coherence. The image is superimposed on the last SK I, II, III data (2010) on neutrino mixing. Time integral is 1489 days as in SK in PDG 2010. The energies range in the window 1.33–10 GeV. The zenith angle distributions are for fully contained 1-ring, e-like (top) and μ-like events (bottom) both with visible energy >1.33 GeV. The background black continuous histogram shows the non-oscillating Monte Carlo events, and the solid thick gray histograms show the best-fit expectations for common neutrino oscillations [
<xref ref-type="bibr" rid="jpg410574bib04">4</xref>
]. Our frozen speed electron–muon neutrino mixing is described by a dashed gray histogram made by a complex combination of the effects of the muon (over electron) flux ratio, the different muon neutrino (over electron) cross section, the muon into tau oscillation at different zenith-distance tracks and the different distances for pions and muons in decay in flight at each zenith angle. The dashed gray histogram describes this new de-coherent scenario able to segregate the electron–muon flavor. However, the departure from the data (mainly for electron flavors) is remarkable and is in severe conflict with the observations. There is no way for frozen super-luminal neutrino speeds to occur.</p>
</caption>
<graphic id="jpg410574f2_eps" content-type="print" xlink:href="jpg410574f2_pr.eps"></graphic>
<graphic id="jpg410574f2_online" content-type="online" xlink:href="jpg410574f2_online.jpg"></graphic>
</fig>
<p>Anyway, without prejudice, one may (or must) search in the oldest IMB records for the presence of any precursor twin neutrino burst in the 3.72 years before 1987, let us say around June 1983, centered (within a spread of a couple of months) around 2 June 1983. The IMB detector has been recording since 1982; Kamiokande was not active at this time. The presence of such a precursor (that for different reasons is unrealistic) will boost the hypothetical imaginary OPERA–CERN discovery from its present unacceptable field to a more consistent experimental arena. An even more revolutionary discover may come from an additional twin cluster of events due (for instance) to a tau neutrino's slightly different speed component; this possibility (additional split in muon versus tau neutrino velocities) is nevertheless most unexpected in view of the short oscillation scale well observed for muon neutrino conversion into tau ones by the atmospheric SK muon neutrino and also into K2K records. Indeed, all such frozen neutrino speed models should overcome many other tests, basically all the observed mixing data, with a very little hope of survival.</p>
</sec>
<sec id="jpg410574s4">
<label>4.</label>
<title>Neutrino ν
<sub>
<italic>e</italic>
</sub>
versus ν
<sub>μ</sub>
in fast de-coherence</title>
<p>Once again, assuming that the frozen neutrino speed of ν
<sub>μ</sub>
(as well as its twin ν
<sub>τ</sub>
) decouples from the SN ν
<sub>
<italic>e</italic>
</sub>
and its antiparticle states, in charge-parity–time (CPT) reversal symmetry conserved physics, then the question is: How do the flavor states separate in flight? Let us note that an OPERA frozen speed ν
<sub>μ</sub>
will anticipate (for OPERA super-luminal neutrino velocity) a distance δ
<italic>l</italic>
<sub>
<italic>e</italic>
− μ</sub>
= 0.25 μm for each centimeter length (
<italic>L</italic>
) of flight:
<disp-formula id="jpg410574ueq02">
<tex-math></tex-math>
<graphic xlink:href="jpg410574ueq02.gif"></graphic>
</disp-formula>
Consequently, the Compton muon neutrino wave-length
<disp-formula id="jpg410574ueq03">
<tex-math></tex-math>
<graphic xlink:href="jpg410574ueq03.gif"></graphic>
</disp-formula>
very quickly becomes comparable to its delayed distance (electron neutrino at light velocity), for instance, at 10 MeV: nearly 0.04 μm. Therefore also electron antineutrinos from the nuclear reactor will separate into their mass states (from muon flavors), soon depleting the
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn24.gif"></inline-graphic>
</inline-formula>
by a large factor, almost a half. This effect has already been observed in atmospheric cosmic ray neutrinos and in recent years' Kamland signals, see figure
<xref ref-type="fig" rid="jpg410574f3">3</xref>
. In a more remarkable way, the nuclear plant energy output would be correlated only with 57% of the antineutrino flux, contrary to well-calibrated observations. Note that the so-called reactor antineutrino anomaly at a few per cent cannot accommodate the severe suppression above [
<xref ref-type="bibr" rid="jpg410574bib08">8</xref>
]. The atmospheric signal must combine both the early muon–electron mixing (because of the super-luminal muon neutrino assumption) and the complete or partial (muon–tau) mixing. These expected de-coherence imprints are totally absent in the long known atmospheric muon and electron neutrino anisotropy, in conflict with such an
<italic>ad hoc</italic>
frozen muon neutrino super-luminal speed scenario. Let us recall in the following that we assume normal 3 flavor neutrino mixing, where the asymptotic probability of the muon (and other mixtures) surviving as a muon is
<italic>P</italic>
<sub>μ</sub>
→ ν
<sub>μ</sub>
) = 0.357,
<italic>P</italic>
<sub>
<italic>e</italic>
</sub>
→ ν
<sub>
<italic>e</italic>
</sub>
) = 0.547,
<italic>P</italic>
<sub>μ</sub>
→ ν
<sub>
<italic>e</italic>
</sub>
) =
<italic>P</italic>
<sub>
<italic>e</italic>
</sub>
→ ν
<sub>μ</sub>
) = 0.264, see figures
<xref ref-type="fig" rid="jpg410574f2">2</xref>
,
<xref ref-type="fig" rid="jpg410574f3">3</xref>
and
<xref ref-type="fig" rid="jpg410574f4">4</xref>
, respectively.</p>
<fig id="jpg410574f3">
<label>Figure 3.</label>
<caption id="jpg410574fc3">
<p>The expected electron mixing and de-coherence in Kamland neutrino signals (left side, inner box) in a super-luminal scenario, where the muon and electron are separated due to their very different speeds. The very fast de-coherence among electron and muon flavor states (here emphasized and expanded in size) occurs within μm distances. It may suppress the primary nuclear
<inline-formula>
<tex-math></tex-math>
<inline-graphic xlink:href="jpg410574ieqn23.gif"></inline-graphic>
</inline-formula>
in a sharp (0.04 μm) distance by a large factor,
<italic>P</italic>
<sub>
<italic>e</italic>
</sub>
→ ν
<sub>
<italic>e</italic>
</sub>
) = 0.547, as shown by the dotted horizontal line, a steady signature far from the observed oscillating one in Kamland data.</p>
</caption>
<graphic id="jpg410574f3_eps" content-type="print" xlink:href="jpg410574f3_pr.eps"></graphic>
<graphic id="jpg410574f3_online" content-type="online" xlink:href="jpg410574f3_online.jpg"></graphic>
</fig>
<fig id="jpg410574f4">
<label>Figure 4.</label>
<caption id="jpg410574fc4">
<p>The expected muon, electron and tau mixing due to muon–electron neutrino de-coherence in the OPERA experiment. Note the suppression due to the probability
<italic>P</italic>
<sub>μ</sub>
→ ν
<sub>
<italic>e</italic>
</sub>
) =
<italic>P</italic>
<sub>
<italic>e</italic>
</sub>
→ ν
<sub>μ</sub>
) = 0.264.</p>
</caption>
<graphic id="jpg410574f4_eps" content-type="print" xlink:href="jpg410574f4_pr.eps"></graphic>
<graphic id="jpg410574f4_online" content-type="online" xlink:href="jpg410574f4_online.jpg"></graphic>
</fig>
</sec>
<sec id="jpg410574s5">
<label>5.</label>
<title>Conclusions: anti-tachyon or frozen super-luminal ν
<sub>μ</sub>
?</title>
<p>Assuming a nominal absolute imaginary neutrino (tachyon) mass of 117 MeV and a Lorentz factor about 145, one may fit a tachyon signal at OPERA energy and precursor time, but it is excluded because it requires no SN1987A signal and a huge neutrino spread (thousand years). We imagined a new
<italic>ad hoc</italic>
(possibly wrong) anti-tachyon law (within a huge neutrino mass of about 2.4 TeV), alleviating at best this spread within 2 min or 12 s, but the model is unnatural, with no theoretical basis, and is already in remarkable conflict with energy independence in OPERA neutrino speeds. These toy models cannot match the well-known mixing bounds. The fixed speed scenario option (where muon neutrino speed differs from the electron one) also suffers from different contradictions as shown above. Finally, an even more
<italic>ad hoc</italic>
different frozen neutrino flavor speed, where the electron neutrino flies at (very near (1∓10
<sup>−12</sup>
) ·
<italic>c</italic>
) speed while the muon neutrino flies at OPERA frozen super-luminal speed (very near (1–2.37 × 10
<sup>−5</sup>
) ·
<italic>c</italic>
)), agrees (apparently) with data, but requires a hidden SN1987A neutrino precursor in the June 1983 event in IMB data. This model suffers anyway from not explaining the absent electron neutrino mixing within the atmospheric ν
<sub>
<italic>e</italic>
</sub>
observed behavior as well in Kamland recent records (via θ
<sub>12</sub>
oscillation and de-coherence, see figure
<xref ref-type="fig" rid="jpg410574f3">3</xref>
), as well as the same muon neutrino depletion due to de-coherence with electron flavor in the OPERA and MINOS experiments. In conclusion, the imaginary neutrino mass at the needed values (for the OPERA–CERN claim) is in disagreement with some data and by several orders of magnitude. Because of the limited time accuracy in OPERA–MINOS experiments and because of present arguments and constraints, there is no hope of testing any observable superluminal self-consistent neutrino speed.
<xref ref-type="fn" rid="jpg410574fn1">
<sup>1</sup>
</xref>
<fn id="jpg410574fn1">
<label>1</label>
<p>During supernova 1987A on 23 February, the neutrino records were observed within 12 s at Universal Time 7.33 by IMB and Kamiokande. However, there was a puzzling 5 neutrino precursor at Universal Time 2.52 by the Italian LSD experiment at Mont Blanc, a much smaller detector that observed a burst 273 min before the IMB–Kamiokande record. Therefore, there is room (for any speculative theoretician) to consider a smaller superluminal speed deviation (3.37 ppb) not coexistent with OPERA–CERN, but able to explain such a LSD precursor event. However, by the same arguments as in this section (decoherence at greater than a few cm distance), this new superluminal behaviour has to be rejected.</p>
</fn>
Therefore, we cannot imagine any imaginary mass able to fit the super-luminal data. Finally, rumors seem anyway to dismiss such an unbelievable discovery, leading to a more realistic neutrino behavior.</p>
</sec>
<sec id="jpg410574s6">
<label>6.</label>
<title>Note after the submission</title>
<p>After this paper was submitted, a wide sequence (hundreds) of articles in these months discussed the OPERA super-luminal neutrino claim. The earliest ones and most of the others considered exotic possibilities for fitting or explaining the novel result [
<xref ref-type="bibr" rid="jpg410574bib05">5</xref>
]. A few, such as those we mention [
<xref ref-type="bibr" rid="jpg410574bib06">6</xref>
,
<xref ref-type="bibr" rid="jpg410574bib07">7</xref>
], faced the eventual super-luminal consequences finding unacceptable consequences in Cerenkov-like neutrino emission and absorption or arguments along the lines of pion decay kinematic inconsistency, leading to the rejection of the OPERA result as in our earliest and present study. Moreover, recently the OPERA–CERN experiment has sent a much narrower bunch leading to a confirmation of their super-luminal neutrino claim [
<xref ref-type="bibr" rid="jpg410574bib02">2</xref>
]. But last minute rumors [
<xref ref-type="bibr" rid="jpg410574bib09">9</xref>
] from OPERA seem to regard the key as a timing bug of the experiment. After all as someone said long time ago, Nature is subtle, but not malicious (or as we would add maliciously, a century after and later [
<xref ref-type="bibr" rid="jpg410574bib02">2</xref>
], nor perverse). Indeed, the authors thank the same Nature that forced us to the lucky privilege to be defending these (now) obvious relativistic arguments, in an embarrassing loneliness, within a coral OPERA Seminar at Rome on 11 October 2011.</p>
</sec>
</body>
<back>
<app-group id="jpg410574app">
<app id="jpg410574app1">
<label>Appendix.</label>
<title>Neutrino mass by Andromeda SN ν delay</title>
<p>In the next nearby supernovae event, possibly from Andromeda, it would be better to test the more conventional time delay of the prompt neutrino masses by their rapid neutralization NS signals versus the gravitational wave burst [
<xref ref-type="bibr" rid="jpg410574bib03">3</xref>
]. Indeed, a millisecond prompt neutrino peak will obtain a comparable time delay (with respect to SN gravitons) due to common (real mass) neutrino slower speed, and it may trace even the guaranteed (more mundane) real neutrino mass splitting (of atmospheric nature:
<italic>m</italic>
<sub>ν</sub>
⩾ 0.05 eV). In future, a few Mpc SN search (as toward Virgo) by future time-correlated SN–GW (gravitational wave) detection of the neutronization burst may lead to a neutrino mass discovery. Indeed, after all, neutrino mass may be more real than imaginary.</p>
</app>
</app-group>
<ref-list content-type="numerical">
<title>References</title>
<ref id="jpg410574bib01">
<label>1</label>
<element-citation publication-type="preprint">
<person-group person-group-type="author">
<name>
<surname>Adams</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<comment>for OPERA-GNGS experiment arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.4897v1">1109.4897v1</ext-link>
</comment>
</element-citation>
</ref>
<ref id="jpg410574bib02">
<label>2</label>
<element-citation publication-type="preprint">
<person-group person-group-type="author">
<name>
<surname>Adams</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<comment>for OPERA-GNGS experiment arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.4897v2">1109.4897v2</ext-link>
</comment>
</element-citation>
</ref>
<ref id="jpg410574bib03">
<label>3</label>
<element-citation publication-type="journal" id="jpg410574bib03a">
<person-group person-group-type="author">
<name>
<surname>Fargion</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>1981</year>
<source>Lett. Nuovo Cimento</source>
<volume>31</volume>
<fpage>499</fpage>
<lpage>500</lpage>
<page-range>499–500</page-range>
<pub-id pub-id-type="doi">10.1007/BF02778100</pub-id>
</element-citation>
<element-citation publication-type="journal" id="jpg410574bib03b">
<person-group person-group-type="author">
<name>
<surname>Fargion</surname>
<given-names>D</given-names>
</name>
</person-group>
<year>2002</year>
<source>Astrophys. J.</source>
<volume>570</volume>
<fpage>909</fpage>
<lpage>425</lpage>
<page-range>909–25</page-range>
<pub-id pub-id-type="doi">10.1086/339772</pub-id>
</element-citation>
</ref>
<ref id="jpg410574bib04">
<label>4</label>
<element-citation publication-type="webpage">
<comment>
<ext-link ext-link-type="uri" xlink:href="http://pdg.lbl.gov/2011/reviews/rpp2011-rev-neutrino-mixing.pdf">http://pdg.lbl.gov/2011/reviews/rpp2011-rev-neutrino-mixing.pdf</ext-link>
</comment>
</element-citation>
</ref>
<ref id="jpg410574bib05">
<label>5</label>
<element-citation publication-type="preprint">
<comment>arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.4980">1109.4980</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5172">1109.5172</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5289">1109.5289</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.535">1109.535</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5378">1109.5378</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5411">1109.5411</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5445">1109.5445</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5599">1109.5599</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5671">1109.5671</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5682">1109.5682</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5685">1109.5685</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5687">1109.5687</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5721">1109.5721</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5727">1109.5727</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5749">1109.5749</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.5917">1109.5917</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6005">1109.6005</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6055">1109.6055</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6097">1109.6097</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6121">1109.6121</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6160">1109.6160</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6170">1109.6170</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6238">1109.6238</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6249">1109.6249</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6282">1109.6282</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6296">1109.6296</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6298">1109.6298</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6308">1109.6308</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6312">1109.6312</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6520">1109.6520</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6562">1109.6562</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6563">1109.6563</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6630">1109.6630</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6631">1109.6631</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6641">1109.6641</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6667">1109.6667</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6930">1109.6930</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0132">1110.0132</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0234">1110.0234</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0239">1110.0239</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0241">1110.0241</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0243">1110.0243</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0245">1110.0245</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0302">1110.0302</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0351">1110.0351</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0392">1110.0392</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0424">1110.0424</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0430">1110.0430</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0449">1110.0449</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0451">1110.0451</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0456">1110.0456</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0521">1110.0521</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0595">1110.0595</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0644">1110.0644</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0675">1110.0675</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0697">1110.0697</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0736">1110.0736</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0762">1110.0762</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0783">1110.0783</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0821">1110.0821</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0882">1110.0882</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0931">1110.0931</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0970">1110.0970</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0989">1110.0989</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.1162">1110.1162</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.1253">1110.1253</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.1317">1110.1317</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.1330">1110.1330</ext-link>
. arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.2909">1110.2909</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.2685">1110.2685</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.2463">1110.2463</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.2236">1110.2236</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.2219">1110.2219</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.2170">1110.2170</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.2146">1110.2146</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.2123">1110.2123</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.2060">1110.2060</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.1943">1110.1943</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.1875">1110.1875</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.1857">1110.1857</ext-link>
, arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.1790">1110.1790</ext-link>
</comment>
</element-citation>
</ref>
<ref id="jpg410574bib06">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>A G</given-names>
</name>
<name>
<surname>Glashow</surname>
<given-names>S</given-names>
</name>
</person-group>
<year>2011</year>
<source>Phys. Rev. Lett.</source>
<volume>107</volume>
<elocation-id content-type="artnum">181803</elocation-id>
<comment>(arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1109.6562">1109.6562</ext-link>
)</comment>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.107.181803</pub-id>
</element-citation>
</ref>
<ref id="jpg410574bib07">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowsik</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nussinov</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>U</given-names>
</name>
</person-group>
<year>2011</year>
<source>Phys. Rev. Lett.</source>
<volume>107</volume>
<elocation-id content-type="artnum">251801</elocation-id>
<comment>(arXiv:
<ext-link ext-link-type="arxiv" xlink:href="http://arxiv.org/abs/1110.0241">1110.0241</ext-link>
)</comment>
<pub-id pub-id-type="doi">10.1103/PhysRevLett.107.251801</pub-id>
</element-citation>
</ref>
<ref id="jpg410574bib08">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mention</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<year>2011</year>
<source>Phys. Rev.
<named-content content-type="jnl-part">D</named-content>
</source>
<volume>83</volume>
<elocation-id content-type="artnum">073006</elocation-id>
<pub-id pub-id-type="doi">10.1103/PhysRevD.83.073006</pub-id>
</element-citation>
</ref>
<ref id="jpg410574bib09">
<label>9</label>
<element-citation publication-type="webpage">
<comment>
<ext-link ext-link-type="uri" xlink:href="http://www.globalnews.ca/world/world/european+researchers+find+flaw+in+experiment+that+measured+faster-than-light+particles/6442586764/story.html">http://www.globalnews.ca/world/world/european+researchers+find+flaw+in+experiment+that+measured+faster-than-light+particles/6442586764/story.html</ext-link>
</comment>
</element-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Inconsistency in super-luminal CERNOPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Inconsistency in super-luminal CERNOPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniele</namePart>
<namePart type="family">Fargion</namePart>
<affiliation>Physics Department, Rome University 1, Sapienza and INFN, Roma1 Pl A Moro 2, 00185 Rome, Italy</affiliation>
<affiliation>E-mail: daniele.fargion@roma1.infn.it</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniele</namePart>
<namePart type="family">D'Armiento</namePart>
<affiliation>Physics Department, Rome University 1, Sapienza and INFN, Roma1 Pl A Moro 2, 00185 Rome, Italy</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article"></genre>
<subject>
<genre>article-type</genre>
<topic>Paper</topic>
</subject>
<subject>
<genre>section</genre>
<topic>Particle physics</topic>
</subject>
<originInfo>
<publisher>IOP Publishing</publisher>
<dateIssued encoding="w3cdtf">2012-08</dateIssued>
<dateCreated encoding="w3cdtf">2012-06-12</dateCreated>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>We tried to fit in any way the recent OPERACERN claims of a neutrino super-luminal speed with the observed supernova SN1987A neutrino burst and all (or most) neutrino flavor oscillations. We considered three main frameworks: (1) tachyon imaginary neutrino mass, whose timing is nevertheless in conflict with the observed IMBKamiokande SN1987A burst by thousands of billion times longer. (2) An ad hoc anti-tachyon model whose timing shrinkage may accommodate the SN1987A burst but greatly disagrees with the energy-independent CERNOPERA super-luminal speed. (3) A split neutrino flavor speed (among a common real mass relativistic e component and a super-luminal ) in an ad hoc frozen speed scenario that leads to the prompt neutrino de-coherence and rapid flavor mixing (between e and , ) that are in conflict with most oscillation records. Therefore, we concluded that an error must be hidden in OPERACERN time calibration (as indeed recent rumors seem to confirm). We concluded recalling the relevance of the real guaranteed minimal atmospheric neutrino mass whose detection may be achieved by a millisecond gravitonneutrino split time delay among the gravity burst and neutronization neutrino peak in any future supernova explosion in Andromeda recordable in the Megaton neutrino detector.</abstract>
<subject>
<genre>author-pacs</genre>
<topic>14.60.Pq</topic>
<topic>13.15.g</topic>
<topic>13.35.Bv</topic>
<topic>13.85.Tp</topic>
</subject>
<subject>
<genre>Keywords</genre>
<topic>neutrino</topic>
<topic>super-luminal</topic>
<topic>flavor mixing</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Physics G Nuclear and Particle Physics</title>
</titleInfo>
<genre type="Journal">journal</genre>
<identifier type="ISSN">0954-3899</identifier>
<identifier type="eISSN">1361-6471</identifier>
<identifier type="PublisherID">jpg</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14</identifier>
<identifier type="DOI">10.1088/0954-3899/39/8/085002</identifier>
<identifier type="href">http://stacks.iop.org/JPhysG/39/085002</identifier>
<identifier type="ArticleID">jpg410574</identifier>
<accessCondition type="use and reproduction" contentType="copyright">2012 IOP Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource>IOP</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000002 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000002 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:73662B5D28EDD5B0F28896AE8C5B9FF7C3890B14
   |texte=   Inconsistency in super-luminal CERNOPERA neutrino speed with the observed SN1987A burst and neutrino mixing for any imaginary neutrino mass
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Oct 8 06:48:41 2020